scholarly journals An unmanned aerial vehicle sampling platform for atmospheric water vapor isotopes in polar environments

2021 ◽  
Vol 14 (11) ◽  
pp. 7045-7067
Author(s):  
Kevin S. Rozmiarek ◽  
Bruce H. Vaughn ◽  
Tyler R. Jones ◽  
Valerie Morris ◽  
William B. Skorski ◽  
...  

Abstract. Above polar ice sheets, atmospheric water vapor exchange occurs across the planetary boundary layer (PBL) and is an important mechanism in a number of processes that affect the surface mass balance of the ice sheets. Yet, this exchange is not well understood and has substantial implications for modeling and remote sensing of the polar hydrologic cycle. Efforts to characterize the exchange face substantial logistical challenges including the remoteness of ice sheet field camps, extreme weather conditions, low humidity and temperature that limit the effectiveness of instruments, and dangers associated with flying manned aircraft at low altitudes. Here, we present an unmanned aerial vehicle (UAV) sampling platform for operation in extreme polar environments that is capable of sampling atmospheric water vapor for subsequent measurement of water isotopes. This system was deployed to the East Greenland Ice-core Project (EastGRIP) camp in northeast Greenland during summer 2019. Four sampling flight missions were completed. With a suite of atmospheric measurements aboard the UAV (temperature, humidity, pressure, GPS) we determine the height of the PBL using online algorithms, allowing for strategic decision-making by the pilot to sample water isotopes above and below the PBL. Water isotope data were measured by a Picarro L2130-i instrument using flasks of atmospheric air collected within the nose cone of the UAV. The internal repeatability for δD and δ18O was 2.8 ‰ and 0.45 ‰, respectively, which we also compared to independent EastGRIP tower-isotope data. Based on these results, we demonstrate the efficacy of this new UAV-isotope platform and present improvements to be utilized in future polar field campaigns. The system is also designed to be readily adaptable to other fields of study, such as measurement of carbon cycle gases or remote sensing of ground conditions.

2021 ◽  
Author(s):  
Kevin S. Rozmiarek ◽  
Bruce H. Vaughn ◽  
Tyler R. Jones ◽  
Valerie Morris ◽  
William B. Skorski ◽  
...  

Abstract. Above polar ice sheets, atmospheric water vapor exchange occurs across the planetary boundary layer (PBL) and is an important mechanism in a number of processes that affect the surface mass balance of the ice sheets. Yet, this exchange is not well understood, and has substantial implications for modeling and remote sensing of the polar hydrologic cycle. Efforts to characterize the exchange face substantial logistical challenges including the remoteness of ice sheet field camps, extreme weather conditions, low humidity and temperature that limits the effectiveness of instruments, and dangers associated with flying manned aircraft at low altitudes. Here, we present an Unmanned Aerial Vehicle (UAV) sampling platform for operation in extreme polar environments that is capable of sampling atmospheric water vapor for subsequent measurement of water isotopes. This system was deployed to the East Greenland Ice-core Project (EastGRIP) camp in northeast Greenland during summer 2019. Six sampling flight missions were completed. With a suite of atmospheric measurements onboard the UAV (temperature, humidity, pressure, GPS) we determine the height of the PBL using on-line algorithms, allowing for strategic decision making by the pilot to sample water isotopes above and below the PBL. Water isotope data was measured by a Picarro 2130-i instrument using flasks of atmospheric air collected within the nose cone of the UAV. The internal repeatability for δD and δ18O was 2.8 ‰ and 0.45 ‰, respectively, which we also compared to independent EastGRIP tower-isotope data. Based on these results, we demonstrate the efficacy of this new UAV-isotope platform and present improvements to be utilized in future polar field campaigns. The system is also designed to be readily adaptable to other fields of study, such as measurement of carbon cycle gases or remote sensing of ground conditions.


2005 ◽  
Author(s):  
Yanmeng Bi ◽  
Jietai Mao ◽  
Meihua Wang ◽  
Chengcai Li

2020 ◽  
Author(s):  
Alain Zuber ◽  
Wolfgang Stremme ◽  
Michel Grutter ◽  
David Adams ◽  
Thomas Blumenstock ◽  
...  

<p><span>Atmospheric water vapor plays a key role in weather and climate. Knowledge about its variability, diurnal and seasonal cycles, as well as its long-term trend is necessary to improve our understanding of the hydrological cycle. H2O total columns are measured by the two remote sensing techniques, ground-based solar absorption FTIR spectroscopy and a GPS (Global Positioning System) receiver, over a site in central Mexico. The Altzomoni Atmospheric Observatory (3989 m a.s.l., 19.32ºN, 98.65ºW) is a high altitude station located within the Izta-Popo national park, 60 km SE from Mexico City. The time series of GPS and FTIR show a high correlation between coincident hourly means. Both techniques are complementary since despite that GPS works throughout day and night and also in cloudy and rainy weather conditions, the FTIR data provides in addition altitude-resolved information about the atmospheric water vapor and permits to distinguish different isotopes.</span></p><p><span>In this study, we show water vapor columns in the 2013 to 2019 period for this region retrieved from FTIR and GPS measurements and preliminary results about their isotopic composition (H216O, H218O and HD16O). We discuss the opportunity to study the hydrological cycle in central Mexico using the relationship between light and heavy isotopes, a relationship that gives valuable information about the sources and transport pathways.</span></p>


Sign in / Sign up

Export Citation Format

Share Document