scholarly journals Electron density profiles in the quiet lower ionosphere based on the results of modeling and experimental data

2012 ◽  
Vol 30 (9) ◽  
pp. 1345-1360 ◽  
Author(s):  
V. Barabash ◽  
A. Osepian ◽  
P. Dalin ◽  
S. Kirkwood

Abstract. The theoretical PGI (Polar Geophysical Institute) model for the quiet lower ionosphere has been applied for computing the ionization rate and electron density profiles in the summer and winter D-region at solar zenith angles less than 80° and larger than 99° under steady state conditions. In order to minimize possible errors in estimation of ionization rates provided by solar electromagnetic radiation and to obtain the most exact values of electron density, each wavelength range of the solar spectrum has been divided into several intervals and the relations between the solar radiation intensity at these wavelengths and the solar activity index F10.7 have been incorporated into the model. Influence of minor neutral species (NO, H2O, O, O3) concentrations on the electron number density at different altitudes of the sunlit quiet D-region has been examined. The results demonstrate that at altitudes above 70 km, the modeled electron density is most sensitive to variations of nitric oxide concentration. Changes of water vapor concentration in the whole altitude range of the mesosphere influence the electron density only in the narrow height interval 73–85 km. The effect of the change of atomic oxygen and ozone concentration is the least significant and takes place only below 70 km. Model responses to changes of the solar zenith angle, solar activity (low–high) and season (summer–winter) have been considered. Modeled electron density profiles have been evaluated by comparison with experimental profiles available from the rocket measurements for the same conditions. It is demonstrated that the theoretical model for the quiet lower ionosphere is quite effective in describing variations in ionization rate, electron number density and effective recombination coefficient as functions of solar zenith angle, solar activity and season. The model may be used for solving inverse tasks, in particular, for estimations of nitric oxide concentration in the mesosphere.

1963 ◽  
Vol 41 (2) ◽  
pp. 271-285 ◽  
Author(s):  
R. E. Barrington ◽  
E. V. Thrane ◽  
B. Bjelland

Pulsed cross modulation, arising in the region from 60 to 80 km, has been observed during undisturbed days in the spring, summer, and fall of 1960. The manner in which these observations were obtained and the uncertainties associated with the electron-density profiles determined from them are discussed.Average electron-density profiles for each hour of quiet spring days have been deduced. These show that the most rapid changes in electron density occur within one hour of ground sunrise and sunset. Around sunrise a rather uniform layer of about 100 electrons/cc is created almost simultaneously throughout the entire region from 60 to 80 km. As the day progresses, the average electron density between 70 and 80 km changes by a factor of about 10, while the average density between 60 and 70 km changes by only a factor of 2.These features of the D region are discussed in the light of theoretical predictions which assume that cosmic rays and solar Lyman-alpha radiation account for the normal ionization in this region.


2021 ◽  
Author(s):  
Stefan Bender ◽  
Patrick J. Espy ◽  
Larry J. Paxton

Abstract. The coupling of the atmosphere to the space environment has become recognized as an important driver of atmospheric chemistry and dynamics. In order to quantify the effects of particle precipitation on the atmosphere, reliable global energy inputs on spatial scales commensurate with particle precipitation variations are required. To that end, we have validated the Special Sensor Ultraviolet Spectrographic Imagers (SSUSI) products for average electron energy and electron energy flux by comparing to EISCAT electron density profiles. This comparison shows that SSUSI FUV observations can be used to provide ionization rate profiles throughout the auroral region. The SSUSI on board the Defense Meteorological Satellite Program (DMSP) Block 5D3 satellites provide nearly hourly, high-resolution UV snapshots of auroral emissions. These UV data have been converted to average energies and energy fluxes of precipitating electrons. Here we use those SSUSI-derived energies and fluxes to drive standard parametrizations in order to obtain ionization-rate and electron-density profiles in the E-region (90–150 km). These profiles are then compared to EISCAT ground-based electron density measurements. We compare the data from two satellites, DMSP F17 and F18, to the Tromsø UHF radar profiles. We find that differentiating between the magnetic local time (MLT) morning (3–11 h) and evening (15–23 h) provides the best fit to the ground-based data. The data agree well in the MLT morning sector using a Maxwellian electron spectrum, while in the evening sector using a Gaussian spectrum and accounting for bounce-electrons achieved optimum agreement with EISCAT. Depending on the satellite and MLT period, the median of the differences varies between 0 and 20 % above 105 km (F17) and ±15 % above 100 km (F18). Because of the large density gradient below those altitudes, the relative differences get larger, albeit without a substantially increasing absolute difference, with virtually no statistically significant differences at the 1 σ level.


Sign in / Sign up

Export Citation Format

Share Document