nitric oxide concentration
Recently Published Documents


TOTAL DOCUMENTS

220
(FIVE YEARS 26)

H-INDEX

27
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Xingdan Liu ◽  
Liping Ouyang ◽  
Lan Chen ◽  
Yuqin Qiao ◽  
Xiaohan Ma ◽  
...  

Abstract The adverse immune response mediated by macrophages is one of the main factors that are prone to lead poor osseointegration of polyetheretherketone (PEEK) implants in clinic. Hence, endowing PEEK with immunomodulatory ability to avoid the adverse immune response becomes a promise strategy to promote bone repair. In this work, sulfonation and hydrothermal treatment were used to fabricate a three-dimensional porous surface on PEEK and hydroxyapatite composited PEEK. The hydroxyapatite composited PEEK with three-dimensional porous surface inhibited macrophages polarizing to M1 phenotype and down-regulated iNOS protein expression, which led to a nitric oxide concentration reduction in culture medium of mouse bone marrow mesenchymal stem cells (mBMSCs) under co-culture condition. The decrease of nitric oxide concentration could help to increase bone formation related OSX and ALP genes expressions and decrease bone resorption related MMP-9 and MMP-13 genes expressions via cAMP-PKA-RUNX2 pathway in mBMSCs. In summary, the hydroxyapatite composited PEEK with three-dimensional porous surface has the potential to promote osteogenesis of PEEK through immunomodulation, which provides a promising strategy to improve the bone repair ability of PEEK.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Anna Lindahl ◽  
Jere Reijula ◽  
Leo Pekka Malmberg ◽  
Miia Aro ◽  
Tuula Vasankari ◽  
...  

AbstractFollow-up studies of COVID-19 patients have found lung function impairment up to six months after initial infection, but small airway function has not previously been studied. Patients (n = 20) hospitalised for a severe SARS-CoV-2 infection underwent spirometry, impulse oscillometry, and multiple measurements of alveolar nitric oxide three to six months after acute infection. None of the patients had small airway obstruction, nor increased nitric oxide concentration in the alveolar level. None of the patients had a reduced FEV1/FVC or significant bronchodilator responses in IOS or spirometry. In conclusion, we found no evidence of inflammation or dysfunction in the small airways.


Author(s):  
Marta Czubaj-Kowal ◽  
Ryszard Kurzawa ◽  
Henryk Mazurek ◽  
Michał Sokołowski ◽  
Teresa Friediger ◽  
...  

The consequences of air pollution pose one of the most serious threats to human health, and especially impact children from large agglomerations. The measurement of nitric oxide concentration in exhaled air (FeNO) is a valuable biomarker in detecting and monitoring airway inflammation. However, only a few studies have assessed the relationship between FeNO and the level of air pollution. The study aims to estimate the concentration of FeNO in the population of children aged 8–9 attending the third grade of public primary schools in Krakow, as well as to determine the relationship between FeNO concentration and dust and gaseous air pollutants. The research included 4580 children aged 8–9 years who had two FeNO measurements in the winter–autumn and spring–summer periods. The degree of air pollution was obtained from the Regional Inspectorate of Environmental Protection in Krakow. The concentration of pollutants was obtained from three measurement stations located in different parts of the city. The FeNO results were related to air pollution parameters. The study showed weak but significant relationships between FeNO and air pollution parameters. The most significant positive correlations were found for CO8h (r = 0.1491, p < 0.001), C6H6 (r = 0.1420, p < 0.001), PM10 (r = 0.1054, p < 0.001) and PM2.5 (r = 0.1112, p < 0.001). We suggest that particulate and gaseous air pollutants impact FeNO concentration in children aged 8–9 years. More research is needed to assess the impact of air pollution on FeNO concentration in children. The results of such studies could help to explain the increase in the number of allergic and respiratory diseases seen in children in recent decades.


Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 3040
Author(s):  
Alexandra Ciorîță ◽  
Cezara Zăgrean-Tuza ◽  
Augustin C. Moț ◽  
Rahela Carpa ◽  
Marcel Pârvu

The phytochemical analysis of Vinca minor, V. herbacea, V. major, and V. major var. variegata leaf extracts showed species-dependent antioxidant, antibacterial, and cytotoxic effects correlated with the identified phytoconstituents. Vincamine was present in V. minor, V. major, and V. major var. variegata, while V. minor had the richest alkaloid content, followed by V. herbacea. V. major var. variegata was richest in flavonoids and the highest total phenolic content was found in V. herbacea which also had elevated levels of rutin. Consequently, V. herbacea had the highest antioxidant activity followed by V. major var. variegata. Whereas, the lowest one was of V. major. The V. minor extract showed the most efficient inhibitory effect against both Staphylococcus aureus and E. coli. On the other hand, V. herbacea had a good anti-bacterial potential only against S. aureus, which was most affected at morphological levels, as indicated by scanning electron microscopy. The Vinca extracts acted in a dose-depended manner against HaCaT keratinocytes and A375 melanoma cells and moreover, with effects on the ultrastructure, nitric oxide concentration, and lactate dehydrogenase release. Therefore, the Vinca species could be exploited further for the development of alternative treatments in bacterial infections or as anticancer adjuvants.


Nanomaterials ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 243
Author(s):  
Jakob Meier ◽  
Joseph Stapleton ◽  
Eric Hofferber ◽  
Abigail Haworth ◽  
Stephen Kachman ◽  
...  

Nitric oxide (NO), a free radical present in biological systems, can have many detrimental effects on the body, from inflammation to cancer. Due to NO’s short half-life, detection and quantification is difficult. The inability to quantify NO has hindered researchers’ understanding of its impact in healthy and diseased conditions. Single-walled carbon nanotubes (SWNTs), when wrapped in a specific single-stranded DNA chain, becomes selective to NO, creating a fluorescence sensor. Unfortunately, the correlation between NO concentration and the SWNT’s fluorescence intensity has been difficult to determine due to an inability to immobilize the sensor without altering its properties. Through the use of a recently developed sensor platform, systematic studies can now be conducted to determine the correlation between SWNT fluorescence and NO concentration. This paper explains the methods used to determine the equations that can be used to convert SWNT fluorescence into NO concentration. Through the use of the equations developed in this paper, an easy method for NO quantification is provided. The methods outlined in this paper will also enable researchers to develop equations to determine the concentration of other reactive species through the use of SWNT sensors.


PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0241861
Author(s):  
Raquel Morais de Paiva Daibert ◽  
Carlos Alberto Oliveira de Biagi Junior ◽  
Felipe de Oliveira Vieira ◽  
Marcos Vinicius Gualberto Barbosa da Silva ◽  
Eugenio Damaceno Hottz ◽  
...  

Macrophages are classified upon activation as classical activated M1 and M2 anti-inflammatory regulatory populations. This macrophage polarization is well characterized in humans and mice, but M1/M2 profile in cattle has been far less explored. Bos primigenius taurus (taurine) and Bos primigenius indicus (indicine) cattle display contrasting levels of resistance to infection and parasitic diseases such as C57BL/6J and Balb/c murine experimental models of parasite infection outcomes based on genetic background. Thus, we investigated the differential gene expression profile of unstimulated and LPS stimulated monocyte-derived macrophages (MDMs) from Holstein (taurine) and Gir (indicine) breeds using RNA sequencing methodology. For unstimulated MDMs, the contrast between Holstein and Gir breeds identified 163 Differentially Expressed Genes (DEGs) highlighting the higher expression of C-C chemokine receptor type five (CCR5) and BOLA-DQ genes in Gir animals. LPS-stimulated MDMs from Gir and Holstein animals displayed 1,257 DEGs enriched for cell adhesion and inflammatory responses. Gir MDMs cells displayed a higher expression of M1 related genes like Nitric Oxide Synthase 2 (NOS2), Toll like receptor 4 (TLR4), Nuclear factor NF-kappa-B 2 (NFKB2) in addition to higher levels of transcripts for proinflammatory cytokines, chemokines, complement factors and the acute phase protein Serum Amyloid A (SAA). We also showed that gene expression of inflammatory M1 population markers, complement and SAA genes was higher in Gir in buffy coat peripheral cells in addition to nitric oxide concentration in MDMs supernatant and animal serum. Co-expression analyses revealed that Holstein and Gir animals showed different transcriptional signatures in the MDMs response to LPS that impact on cell cycle regulation, leukocyte migration and extracellular matrix organization biological processes. Overall, the results suggest that Gir animals show a natural propensity to generate a more pronounced M1 inflammatory response than Holstein, which might account for a faster immune response favouring resistance to many infection diseases.


Sign in / Sign up

Export Citation Format

Share Document