scholarly journals Large-Eddy Simulation on turbulent flow and plume dispersion over a 2-dimensional hill

2010 ◽  
Vol 4 (1) ◽  
pp. 71-76 ◽  
Author(s):  
H. Nakayama ◽  
H. Nagai

Abstract. The dispersion analysis of airborne contaminants including radioactive substances from industrial or nuclear facilities is an important issue for air quality maintenance and safety assessment. In Japan, many nuclear power plants are located at complex coastal terrains. In these cases, terrain effects on the turbulent flow and plume dispersion should be investigated. In this study, we perform Large-Eddy Simulation (LES) of turbulent flow and plume dispersion over a 2-dimensional hill flow and investigate the characteristics of mean and fluctuating concentrations.

2021 ◽  
Vol 6 (4) ◽  
Author(s):  
Wen Zhang ◽  
Minping Wan ◽  
Zhenhua Xia ◽  
Jianchun Wang ◽  
Xiyun Lu ◽  
...  

Author(s):  
N Kharoua ◽  
L Khezzar

Large eddy simulation of turbulent flow around smooth and rough hemispherical domes was conducted. The roughness of the rough dome was generated by a special approach using quadrilateral solid blocks placed alternately on the dome surface. It was shown that this approach is capable of generating the roughness effect with a relative success. The subgrid-scale model based on the transport of the subgrid turbulent kinetic energy was used to account for the small scales effect not resolved by large eddy simulation. The turbulent flow was simulated at a subcritical Reynolds number based on the approach free stream velocity, air properties, and dome diameter of 1.4 × 105. Profiles of mean pressure coefficient, mean velocity, and its root mean square were predicted with good accuracy. The comparison between the two domes showed different flow behavior around them. A flattened horseshoe vortex was observed to develop around the rough dome at larger distance compared with the smooth dome. The separation phenomenon occurs before the apex of the rough dome while for the smooth dome it is shifted forward. The turbulence-affected region in the wake was larger for the rough dome.


Sign in / Sign up

Export Citation Format

Share Document