scholarly journals Early spring mesopelagic carbon remineralization and transfer efficiency in the naturally iron-fertilized Kerguelen area

2015 ◽  
Vol 12 (6) ◽  
pp. 1713-1731 ◽  
Author(s):  
S. H. M. Jacquet ◽  
F. Dehairs ◽  
D. Lefèvre ◽  
A. J. Cavagna ◽  
F. Planchon ◽  
...  

Abstract. We report on the zonal variability of mesopelagic particulate organic carbon remineralization and deep carbon transfer potential during the Kerguelen Ocean and Plateau compared Study 2 expedition (KEOPS 2; October–November 2011) in an area of the polar front supporting recurrent massive blooms from natural Fe fertilization. Mesopelagic carbon remineralization (MR) was assessed using the excess, non-lithogenic particulate barium (Baxs) inventories in mesopelagic waters and compared with bacterial production (BP), surface primary production (PP) and export production (EP). Results for this early season study are compared with the results obtained during a previous study (2005; KEOPS 1) for the same area at a later stage of the phytoplankton bloom. Our results reveal the patchiness of the seasonal advancement and of the establishment of remineralization processes between the plateau (A3) and polar front sites during KEOPS 2. For the Kerguelen plateau (A3 site) we observe a similar functioning of the mesopelagic ecosystem during both seasons (spring and summer), with low and rather stable remineralization fluxes in the mesopelagic column (150–400 m). The shallow water column (~500 m), the lateral advection, the zooplankton grazing pressure and the pulsed nature of the particulate organic carbon (POC) transfer at A3 seem to drive the extent of MR processes on the plateau. For deeper stations (>2000 m) located on the margin, inside a polar front meander, as well as in the vicinity of the polar front, east of Kerguelen, remineralization in the upper 400 m in general represents a larger part of surface carbon export. However, when considering the upper 800 m, in some cases, the entire flux of exported carbon is remineralized. In the polar front meander, where successive stations form a time series, two successive events of particle transfer were evidenced by remineralization rates: a first mesopelagic and deep transfer from a past bloom before the cruise, and a second transfer expanding at mesopelagic layers during the cruise. Regarding the deep carbon transfer efficiency, it appeared that above the plateau (A3 site) the mesopelagic remineralization was not a major barrier to the transfer of organic matter to the seafloor (close to 500 m). There, the efficiency of carbon transfer to the bottom waters (>400 m) as assessed by PP, EP and MR fluxes comparisons reached up to 87% of the carbon exported from the upper 150 m. In contrast, at the deeper locations, mesopelagic remineralization clearly limited the transfer of carbon to depths of >400 m. For sites at the margin of the plateau (station E-4W) and the polar front (station F-L), mesopelagic remineralization even exceeded upper 150 m export, resulting in a zero transfer efficiency to depths >800 m. In the polar front meander (time series), the capacity of the meander to transfer carbon to depth >800 m was highly variable (0 to 73%). The highest carbon transfer efficiencies in the meander are furthermore coupled to intense and complete deep (>800 m) remineralization, resulting again in a near-zero, deep (>2000 m) carbon sequestration efficiency there.

2014 ◽  
Vol 11 (6) ◽  
pp. 9035-9069 ◽  
Author(s):  
S. H. M. Jacquet ◽  
F. Dehairs ◽  
A. J. Cavagna ◽  
F. Planchon ◽  
L. Monin ◽  
...  

Abstract. We report on the zonal variability of mesopelagic particulate organic carbon) remineralization and deep carbon transfer potential during the Kerguelen Ocean and Plateau compared Study 2 expedition (KEOPS 2; October–November 2011) in an area of the Polar Front supporting recurrent massive blooms from natural Fe fertilization. Mesopelagic carbon remineralization was assessed using the excess, non-lithogenic particulate barium (Baxs) inventories in mesopelagic waters and compared with surface primary and export productions. Results for this early season study are compared with results obtained earlier (2005; KEOPS 1) for the same area during summer. For the Kerguelen plateau (A3 site) we observe a similar functioning of the mesopelagic ecosystem during both seasons (spring and summer), with less that 30% of carbon exported from the upper 150 m being remineralized in the mesopelagic column (150–400 m). For deeper stations (> 2000 m) located on the margin, inside a Polar Front meander, as well as in the vicinity of the Polar Front, east of Kerguelen, remineralization in the upper 400 m in general represents > 30% of carbon export, but when considering the upper 800 m, in some cases, the entire flux of exported carbon is remineralized. It appears that above the plateau (A3 site) mesopelagic remineralization is not a major barrier to the transfer of organic matter to the sea-floor (close to 500 m). There the efficiency of carbon sequestration into the bottom waters (> 400 m) reached up to 87% of the carbon exported from the upper 150 m. In contrast, at the deeper locations mesopelagic remineralization clearly limits the sequestration of carbon to depths > 400 m. For sites at the margin of the plateau (station E-4W) and the Polar front (station F-L), mesopelagic remineralization even exceeds upper 150 m export, resulting in a null sequestration efficiency to depths > 800 m. In the Polar Front meander, where successive stations form a time series, the capacity of the meander to transfer carbon to depth > 800 m is highly variable (0 to 73 %). The highest carbon transfer efficiencies in the meander are furthermore coupled to intense and complete deep (> 800 m) remineralization, resulting again in a close to zero deep (> 2000 m) carbon sequestration efficiency there.


2015 ◽  
Vol 12 (19) ◽  
pp. 5597-5618 ◽  
Author(s):  
B. M. Voss ◽  
B. Peucker-Ehrenbrink ◽  
T. I. Eglinton ◽  
R. G. M. Spencer ◽  
E. Bulygina ◽  
...  

Abstract. Rapid changes in the volume and sources of discharge during the spring freshet lead to pronounced variations in biogeochemical properties in snowmelt-dominated river basins. We used daily sampling during the onset of the freshet in the Fraser River (southwestern Canada) in 2013 to identify rapid changes in the flux and composition of dissolved material, with a focus on dissolved organic matter (DOM). Previous time series sampling (at twice monthly frequency) of dissolved inorganic species in the Fraser River has revealed smooth seasonal transitions in concentrations of major ions and tracers of water and dissolved load sources between freshet and base flow periods. In contrast, daily sampling reveals a significant increase in dissolved organic carbon (DOC) concentration (200 to 550 μmol L−1) occurring over a matter of days, accompanied by a shift in DOM optical properties, indicating a transition towards higher molecular weight, more aromatic DOM composition. Comparable changes in DOM composition, but not concentration, occur at other times of year, underscoring the role of seasonal climatology in DOM cycling. A smaller data set of total and dissolved Hg concentrations also showed variability during the spring freshet period, although dissolved Hg dynamics appear to be driven by factors beyond DOM as characterized here. The time series records of DOC and particulate organic carbon (POC) concentrations indicate that the Fraser River exports 0.25–0.35 % of its annual basin net primary productivity. The snowmelt-dominated hydrology, forested land cover, and minimal reservoir impoundment of the Fraser River may influence the DOC yield of the basin, which is high relative to the nearby Columbia River and of similar magnitude to that of the Yukon River to the north. Anticipated warming and decreased snowfall due to climate changes in the region may cause an overall decrease in DOM flux from the Fraser River to the coastal ocean in coming decades


2011 ◽  
Vol 58 (21-22) ◽  
pp. 2222-2234 ◽  
Author(s):  
S.H.M. Jacquet ◽  
F. Dehairs ◽  
I. Dumont ◽  
S. Becquevort ◽  
A.-J. Cavagna ◽  
...  

2015 ◽  
Vol 12 (10) ◽  
pp. 7613-7669 ◽  
Author(s):  
B. M. Voss ◽  
B. Peucker-Ehrenbrink ◽  
T. I. Eglinton ◽  
R. G. M. Spencer ◽  
E. Bulygina ◽  
...  

Abstract. Rapid changes in the volume and sources of discharge during the spring freshet lead to pronounced variations in biogeochemical properties in snowmelt-dominated river basins. We used daily sampling during the onset of the freshet in the Fraser River (southwestern Canada) in 2013 to identify rapid changes in the flux and composition of dissolved material, with a focus on dissolved organic matter (DOM) and mercury (Hg) dynamics. Previous time series sampling (at twice monthly frequency) of dissolved inorganic species in the Fraser River has revealed smooth seasonal transitions in concentrations of major elements and tracers of water and dissolved load sources between freshet and base flow periods. In contrast, daily sampling reveals a significant increase in dissolved organic carbon (DOC) concentration (200 to 550 μmol L−1) occurring over a matter of days, accompanied by a shift in DOM optical properties, indicating a transition towards higher molecular weight, more aromatic DOM composition. Comparable changes in DOM composition, but not concentration, occur at other times of year, underscoring the role of seasonal climatology in DOM cycling. Concentrations of total and dissolved Hg also varied during the spring freshet period, although dissolved Hg dynamics appear to be driven by factors beyond DOM as characterized here. The time series records of DOC and particulate organic carbon (POC) concentrations indicate that the Fraser River exports 0.25–0.35% of its annual basin net primary productivity.


2016 ◽  
Author(s):  
Colleen B. Mouw ◽  
Audrey Barnett ◽  
Galen A. McKinley ◽  
Lucas Gloege ◽  
Darren Pilcher

Abstract. Particulate organic carbon (POC) flux estimated from POC concentration observations from sediment traps and 234Th are compiled across the global ocean. The compilation includes six time series locations: CARIACO, K2, OSP, BATS, OFP and HOT. Efficiency of the biological pump of carbon to the deep ocean depends largely on biologically mediated export of carbon from the surface ocean and its remineralization with depth, thus biologically related parameters able to be estimated from satellite observations were merged at the POC observation sites. Satellite parameters include: net primary production, percent microplankton, sea surface temperature, photosynthetically active radiation, diffuse attenuation coefficient at 490 nm, euphotic zone depth, as well as, climatological mixed layer depth. 85 % of the observations across the globe are concentrated in the Northern Hemisphere with 44 % of the data record overlapping the satellite record. Time series sites accounted for 36 % of the data. 71 % of the data is measured at ≥ 500 m with the most common deployment depths between 1000 and 1500 m. This dataset is valuable for investigations of CO2 drawdown, carbon export, remineralization, and sequestration. The compiled data can be freely accessed at doi:10.1594/PANGAEA.855600.


Sign in / Sign up

Export Citation Format

Share Document