spring freshet
Recently Published Documents


TOTAL DOCUMENTS

57
(FIVE YEARS 20)

H-INDEX

13
(FIVE YEARS 2)

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Dongmei Feng ◽  
Colin J. Gleason ◽  
Peirong Lin ◽  
Xiao Yang ◽  
Ming Pan ◽  
...  

AbstractArctic rivers drain ~15% of the global land surface and significantly influence local communities and economies, freshwater and marine ecosystems, and global climate. However, trusted and public knowledge of pan-Arctic rivers is inadequate, especially for small rivers and across Eurasia, inhibiting understanding of the Arctic response to climate change. Here, we calculate daily streamflow in 486,493 pan-Arctic river reaches from 1984-2018 by assimilating 9.18 million river discharge estimates made from 155,710 satellite images into hydrologic model simulations. We reveal larger and more heterogenous total water export (3-17% greater) and water export acceleration (factor of 1.2-3.3 larger) than previously reported, with substantial differences across basins, ecoregions, stream orders, human regulation, and permafrost regimes. We also find significant changes in the spring freshet and summer stream intermittency. Ultimately, our results represent an updated, publicly available, and more accurate daily understanding of Arctic rivers uniquely enabled by recent advances in hydrologic modeling and remote sensing.


2021 ◽  
Vol 13 (16) ◽  
pp. 3219
Author(s):  
Daniel L. Peters ◽  
K. Olaf Niemann ◽  
Robert Skelly

This study examines the response of a cold-regions deltaic wetland ecosystem in northwestern Canada to two separate and differing seasonal wetting cycles. The goal of this paper was to examine the nature of reflected electromagnetic energy measured by earth observation (EO) satellites, and to assess whether seasonal wetland hydroperiod and episodic flooding events impact the information retrieved by the Sentinel-2 sensors. The year 2018 represents a year characterized by a large spring freshet and ice-jam flooding, while 2019 represents a year characterized more by summer open-water flooding. We applied the Modified Normalized Difference Wetness Index (MNDWI) to address the effects of the wetting cycles. The response of the vegetative cover was tracked using the fraction of the absorbed photosynthetically active radiation (fAPAR) and the Leaf Area Index (LAI). All three indices were viewed through the lens of cover classes as derived through a previously published study by the authors. The study provides a framework for designing longer-term studies where multiple intra- and inter-annual hydrological cycles can be accessed via EO data. Future studies will enable the examination of lag times inherent in the response to the various water sources applied to spectral response and incorporate this EO approach into a monitoring framework.


2021 ◽  
Vol 18 (12) ◽  
pp. 3637-3655
Author(s):  
Jens A. Hölemann ◽  
Bennet Juhls ◽  
Dorothea Bauch ◽  
Markus Janout ◽  
Boris P. Koch ◽  
...  

Abstract. Permafrost degradation in the catchment of major Siberian rivers, combined with higher precipitation in a warming climate, could increase the flux of terrestrially derived dissolved organic matter (tDOM) into the Arctic Ocean (AO). Each year, ∼ 7.9 Tg of dissolved organic carbon (DOC) is discharged into the AO via the three largest rivers that flow into the Laptev Sea (LS) and East Siberian Sea (ESS). A significant proportion of this tDOM-rich river water undergoes at least one freeze–melt cycle in the land-fast ice that forms along the coast of the Laptev and East Siberian seas in winter. To better understand how growth and melting of land-fast ice affect dissolved organic matter (DOM) dynamics in the LS and ESS, we determined DOC concentrations and the optical properties of coloured dissolved organic matter (CDOM) in sea ice, river water and seawater. The data set, covering different seasons over a 9-year period (2010–2019), was complemented by oceanographic measurements (T, S) and determination of the oxygen isotope composition of the seawater. Although removal of tDOM cannot be ruled out, our study suggests that conservative mixing of high-tDOM river water and sea-ice meltwater with low-tDOM seawater is the major factor controlling the surface distribution of tDOM in the LS and ESS. A case study based on data from winter 2012 and spring 2014 reveals that the mixing of about 273 km3 of low-tDOM land-fast-ice meltwater (containing ∼ 0.3 Tg DOC) with more than 200 km3 of high-tDOM Lena River water discharged during the spring freshet (∼ 2.8 Tg DOC yr−1) plays a dominant role in this respect. The mixing of the two low-salinity surface water masses is possible because the meltwater and the river water of the spring freshet flow into the southeastern LS at the same time every year (May–July). In addition, budget calculations indicate that in the course of the growth of land-fast ice in the southeastern LS, ∼ 1.2 Tg DOC yr−1 (± 0.54 Tg) can be expelled from the growing ice in winter, together with brines. These DOC-rich brines can then be transported across the shelves into the Arctic halocline and the Transpolar Drift Current flowing from the Siberian Shelf towards Greenland. The study of dissolved organic matter dynamics in the AO is important not only to decipher the Arctic carbon cycle but also because CDOM regulates physical processes such as radiative forcing in the upper ocean, which has important effects on sea surface temperature, water column stratification, biological productivity and UV penetration.


2021 ◽  
Vol 13 (12) ◽  
pp. 2284
Author(s):  
Caleb Pan ◽  
Peter Kirchner ◽  
John Kimball ◽  
Jinyang Du ◽  
Michael Rawlins

The Yukon River basin encompasses over 832,000 km2 of boreal Arctic Alaska and northwest Canada, providing a major transportation corridor and multiple natural resources to regional communities. The river seasonal hydrology is defined by a long winter frozen season and a snowmelt-driven spring flood pulse. Capabilities for accurate monitoring and forecasting of the annual spring freshet and river ice breakup (RIB) in the Yukon and other northern rivers is limited, but critical for understanding hydrologic processes related to snow, and for assessing flood-related risks to regional communities. We developed a regional snow phenology record using satellite passive microwave remote sensing to elucidate interactions between the timing of upland snowmelt and the downstream spring flood pulse and RIB in the Yukon. The seasonal snow metrics included annual Main Melt Onset Date (MMOD), Snowoff (SO) and Snowmelt Duration (SMD) derived from multifrequency (18.7 and 36.5 GHz) daily brightness temperatures and a physically-based Gradient Ratio Polarization (GRP) retrieval algorithm. The resulting snow phenology record extends over a 29-year period (1988–2016) with 6.25 km grid resolution. The MMOD retrievals showed good agreement with similar snow metrics derived from in situ weather station measurements of snowpack water equivalence (r = 0.48, bias = −3.63 days) and surface air temperatures (r = 0.69, bias = 1 day). The MMOD and SO impact on the spring freshet was investigated by comparing areal quantiles of the remotely sensed snow metrics with measured streamflow quantiles over selected sub-basins. The SO 50% quantile showed the strongest (p < 0.1) correspondence with the measured spring flood pulse at Stevens Village (r = 0.71) and Pilot (r = 0.63) river gaging stations, representing two major Yukon sub-basins. MMOD quantiles indicating 20% and 50% of a catchment under active snowmelt corresponded favorably with downstream RIB (r = 0.61) from 19 river observation stations spanning a range of Yukon sub-basins; these results also revealed a 14–27 day lag between MMOD and subsequent RIB. Together, the satellite based MMOD and SO metrics show potential value for regional monitoring and forecasting of the spring flood pulse and RIB timing in the Yukon and other boreal Arctic basins.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Brice K. Grunert ◽  
Maria Tzortziou ◽  
Patrick Neale ◽  
Alana Menendez ◽  
Peter Hernes

AbstractThe Arctic is experiencing rapid warming, resulting in fundamental shifts in hydrologic connectivity and carbon cycling. Dissolved organic matter (DOM) is a significant component of the Arctic and global carbon cycle, and significant perturbations to DOM cycling are expected with Arctic warming. The impact of photochemical and microbial degradation, and their interactive effects, on DOM composition and remineralization have been documented in Arctic soils and rivers. However, the role of microbes, sunlight and their interactions on Arctic DOM alteration and remineralization in the coastal ocean has not been considered, particularly during the spring freshet when DOM loads are high, photoexposure can be quite limited and residence time within river networks is low. Here, we collected DOM samples along a salinity gradient in the Yukon River delta, plume and coastal ocean during peak river discharge immediately after spring freshet and explored the role of UV exposure, microbial transformations and interactive effects on DOM quantity and composition. Our results show: (1) photochemical alteration of DOM significantly shifts processing pathways of terrestrial DOM, including increasing relative humification of DOM by microbes by > 10%; (2) microbes produce humic-like material that is not optically distinguishable from terrestrial humics; and (3) size-fractionation of the microbial community indicates a size-dependent role for DOM remineralization and humification of DOM observed through modeled PARAFAC components of fluorescent DOM, either through direct or community effects. Field observations indicate apparent conservative mixing along the salinity gradient; however, changing photochemical and microbial alteration of DOM with increasing salinity indicate changing DOM composition likely due to microbial activity. Finally, our findings show potential for rapid transformation of DOM in the coastal ocean from photochemical and microbial alteration, with microbes responsible for the majority of dissolved organic matter remineralization.


2021 ◽  
Author(s):  
Maxim Kharlamov ◽  
Maria Kireeva ◽  
Natalia Varentsova

&lt;p&gt;Over the past 20 years, the climate on the East European plain tends to be significantly warmer and drier. Winters became shorter and spring freshet&amp;#8217;s conditions have been changed significantly. Maximum snow depth was the most important factor of spring freshet formation 30 years ago, but nowadays it has no significance at all and main factor today is melt water losses on infiltration and evaporation.&lt;/p&gt;&lt;p&gt;We registered a decrease in the period of stable snow accumulation (on average by 20% in the southern and southwestern parts of the East European Plain) because of the increase in winter temperatures. More often during first part of winter snow cover disappeared totally. The number of thaws and their duration at the end of the winter also increase and this leads to earlier and more prolonged melting of the snow pack. In these conditions, an extremely low spring freshet is formed. Our studies show that with the condition of an equal maximum snow depth the slow snowmelt forms the spring freshet up to 4 times less in volume than the fast melting.&lt;/p&gt;&lt;p&gt;Soil moisture also plays an important role in the melt water losses. The most part of the East European Plain is characterized by a decrease in soil moisture in late autumn, which indicates increased losses during snow melting period.&lt;/p&gt;&lt;p&gt;Still, the most significant changes in the structure of the factors of spring freshet formation are common to the southern and southwestern parts of the East European Plain. In the northern part, conservative factors still dominate, although this area is characterized by the significant increase in winter temperatures.&lt;/p&gt;&lt;p&gt;The study was supported by Russian Science Foundation Proj. &amp;#8470;19-77-10032&lt;/p&gt;


Water ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 179
Author(s):  
Roxanne Ahmed ◽  
Terry Prowse ◽  
Yonas Dibike ◽  
Barrie Bonsal

Spring freshet is the dominant annual discharge event in all major Arctic draining rivers with large contributions to freshwater inflow to the Arctic Ocean. Research has shown that the total freshwater influx to the Arctic Ocean has been increasing, while at the same time, the rate of change in the Arctic climate is significantly higher than in other parts of the globe. This study assesses the large-scale atmospheric and surface climatic conditions affecting the magnitude, timing and regional variability of the spring freshets by analyzing historic daily discharges from sub-basins within the four largest Arctic-draining watersheds (Mackenzie, Ob, Lena and Yenisei). Results reveal that climatic variations closely match the observed regional trends of increasing cold-season flows and earlier freshets. Flow regulation appears to suppress the effects of climatic drivers on freshet volume but does not have a significant impact on peak freshet magnitude or timing measures. Spring freshet characteristics are also influenced by El Niño-Southern Oscillation, the Pacific Decadal Oscillation, the Arctic Oscillation and the North Atlantic Oscillation, particularly in their positive phases. The majority of significant relationships are found in unregulated stations. This study provides a key insight into the climatic drivers of observed trends in freshet characteristics, whilst clarifying the effects of regulation versus climate at the sub-basin scale.


Water ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 1189 ◽  
Author(s):  
Roxanne Ahmed ◽  
Terry Prowse ◽  
Yonas Dibike ◽  
Barrie Bonsal ◽  
Hayley O’Neil

Runoff from Arctic rivers constitutes a major freshwater influx to the Arctic Ocean. In these nival-dominated river systems, the majority of annual discharge is released during the spring snowmelt period. The circulation regime of the salinity-stratified Arctic Ocean is connected to global earth–ocean dynamics through thermohaline circulation; hence, variability in freshwater input from the Arctic flowing rivers has important implications for the global climate system. Daily discharge data from each of the four largest Arctic-draining river watersheds (Mackenzie, Ob, Lena and Yenisei; herein referred to as MOLY) are analyzed to identify historic changes in the magnitude and timing of freshwater input to the Arctic Ocean with emphasis on the spring freshet. Results show that the total freshwater influx to the Arctic Ocean increased by 89 km3/decade, amounting to a 14% increase during the 30-year period from 1980 to 2009. A distinct shift towards earlier melt timing is also indicated by proportional increases in fall, winter and spring discharges (by 2.5%, 1.3% and 2.5% respectively) followed by a decrease (by 5.8%) in summer discharge as a percentage of the mean annual flow. This seasonal increase in discharge and earlier pulse onset dates indicates a general shift towards a flatter, broad-based hydrograph with earlier peak discharges. The study also reveals that the increasing trend in freshwater discharge to the Arctic Ocean is not solely due to increased spring freshet discharge, but is a combination of increases in all seasons except that of the summer.


Sign in / Sign up

Export Citation Format

Share Document