scholarly journals Does drought advance the onset of autumn leaf senescence in temperate deciduous forest trees?

2021 ◽  
Vol 18 (11) ◽  
pp. 3309-3330
Author(s):  
Bertold Mariën ◽  
Inge Dox ◽  
Hans J. De Boeck ◽  
Patrick Willems ◽  
Sebastien Leys ◽  
...  

Abstract. Severe droughts are expected to become more frequent and persistent. However, their effect on autumn leaf senescence, a key process for deciduous trees and ecosystem functioning, is currently unclear. We hypothesized that (I) severe drought advances the onset of autumn leaf senescence in temperate deciduous trees and (II) tree species show different dynamics of autumn leaf senescence under drought. We tested these hypotheses using a manipulative experiment on beech saplings and 3 years of monitoring mature beech, birch and oak trees in Belgium. The autumn leaf senescence was derived from the seasonal pattern of the chlorophyll content index and the loss of canopy greenness using generalized additive models and piecewise linear regressions. Drought and associated heat stress and increased atmospheric aridity did not affect the onset of autumn leaf senescence in both saplings and mature trees, even if the saplings showed a high mortality and the mature trees an advanced loss of canopy greenness. We did not observe major differences among species. To synthesize, the timing of autumn leaf senescence appears conservative across years and species and even independent of drought, heat and increased atmospheric aridity. Therefore, to study autumn senescence and avoid confusion among studies, seasonal chlorophyll dynamics and loss of canopy greenness should be considered separately.

2020 ◽  
Author(s):  
Bertold Mariën ◽  
Inge Dox ◽  
Hans J. De Boeck ◽  
Patrick Willems ◽  
Sebastien Leys ◽  
...  

Abstract. Severe droughts are expected to become more frequent and persistent. However, their effect on autumn leaf senescence, a key process for deciduous trees and ecosystem functioning, is currently unclear. We hypothesized that (I) severe drought advances the onset of autumn leaf senescence in temperate deciduous trees and that (II) tree species show different dynamics of autumn leaf senescence under drought. We tested these hypotheses using a manipulative experiment on beech saplings and three years of monitoring mature beech, birch and oak trees in Belgium. The autumn leaf senescence was derived from the seasonal pattern of the chlorophyll content index and the loss of canopy greenness using generalized additive models and piece-wise linear regressions. Drought did not affect the onset of autumn leaf senescence in both saplings and mature trees, even if the saplings showed a high mortality and the mature trees a high leaf mortality (due to accelerated leaf senescence and early leaf abscission). We did not observe major differences among species. Synthesis: The timing of autumn leaf senescence appears conservative across years and species, and even independent on drought stress. Therefore, to study autumn senescence, seasonal chlorophyll dynamics and loss of canopy greenness should be considered separately.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Fan Liu ◽  
Chuankuan Wang ◽  
Xingchang Wang

Abstract Background Vegetation indices (VIs) by remote sensing are widely used as simple proxies of the gross primary production (GPP) of vegetation, but their performances in capturing the inter-annual variation (IAV) in GPP remain uncertain. Methods We evaluated the performances of various VIs in tracking the IAV in GPP estimated by eddy covariance in a temperate deciduous forest of Northeast China. The VIs assessed included the normalized difference vegetation index (NDVI), the enhanced vegetation index (EVI), and the near-infrared reflectance of vegetation (NIRv) obtained from tower-radiometers (broadband) and the Moderate Resolution Imaging Spectroradiometer (MODIS), respectively. Results We found that 25%–35% amplitude of the broadband EVI tracked the start of growing season derived by GPP (R2: 0.56–0.60, bias < 4 d), while 45% (or 50%) amplitudes of broadband (or MODIS) NDVI represented the end of growing season estimated by GPP (R2: 0.58–0.67, bias < 3 d). However, all the VIs failed to characterize the summer peaks of GPP. The growing-season integrals but not averaged values of the broadband NDVI, MODIS NIRv and EVI were robust surrogates of the IAV in GPP (R2: 0.40–0.67). Conclusion These findings illustrate that specific VIs are effective only to capture the GPP phenology but not the GPP peak, while the integral VIs have the potential to mirror the IAV in GPP.


2004 ◽  
Vol 188 (1-3) ◽  
pp. 197-210 ◽  
Author(s):  
Annett Wolf ◽  
Peter Friis Møller ◽  
Richard H.W. Bradshaw ◽  
Jaris Bigler

Sign in / Sign up

Export Citation Format

Share Document