scholarly journals Supplementary material to "Peat decomposability in managed organic soils in relation to land-use, organic matter composition and temperature"

Author(s):  
Cédric Bader ◽  
Moritz Müller ◽  
Rainer Schulin ◽  
Jens Leifeld
2017 ◽  
Author(s):  
Cédric Bader ◽  
Moritz Müller ◽  
Rainer Schulin ◽  
Jens Leifeld

Abstract. Organic soils comprise a large yet fragile carbon (C) store in the global C cycle. Drainage, necessary for agriculture and forestry, triggers rapid decomposition of soil organic matter (SOM), typically increasing in the order forest 


2018 ◽  
Vol 15 (3) ◽  
pp. 703-719 ◽  
Author(s):  
Cédric Bader ◽  
Moritz Müller ◽  
Rainer Schulin ◽  
Jens Leifeld

Abstract. Organic soils comprise a large yet fragile carbon (C) store in the global C cycle. Drainage, necessary for agriculture and forestry, triggers rapid decomposition of soil organic matter (SOM), typically increasing in the order forest < grassland < cropland. However, there is also large variation in decomposition due to differences in hydrological conditions, climate and specific management. Here we studied the role of SOM composition on peat decomposability in a variety of differently managed drained organic soils. We collected a total of 560 samples from 21 organic cropland, grassland and forest soils in Switzerland, monitored their CO2 emission rates in lab incubation experiments over 6 months at two temperatures (10 and 20 °C) and related them to various soil characteristics, including bulk density, pH, soil organic carbon (SOC) content and elemental ratios (C / N, H / C and O / C). CO2 release ranged from 6 to 195 mg CO2-C g−1 SOC at 10 °C and from 12 to 423 mg g−1 at 20 °C. This variation occurring under controlled conditions suggests that besides soil water regime, weather and management, SOM composition may be an underestimated factor that determines CO2 fluxes measured in field experiments. However, correlations between the investigated chemical SOM characteristics and CO2 emissions were weak. The latter also did not show a dependence on land-use type, although peat under forest was decomposed the least. High CO2 emissions in some topsoils were probably related to the accrual of labile crop residues. A comparison with published CO2 rates from incubated mineral soils indicated no difference in SOM decomposability between these soil classes, suggesting that accumulation of recent, labile plant materials that presumably account for most of the evolved CO2 is not systematically different between mineral and organic soils. In our data set, temperature sensitivity of decomposition (Q10 on average 2.57 ± 0.05) was the same for all land uses but lowest below 60 cm in croplands and grasslands. This, in turn, indicates a relative accumulation of recalcitrant peat in topsoils.


2021 ◽  
Author(s):  
Katri Rankinen ◽  
Maria Holmberg ◽  
José Cano Bernal ◽  
Anu Akujärvi

&lt;p&gt;Browning of surface waters due to increased terrestrial loading of organic carbon is observed in boreal regions. It is explained by large scale changes in ecosystems, including decrease in sulphur deposition that affects soil organic matter solubility, increase in temperature that stimulates export of dissolved organic carbon (DOC) from organic soils, and increase in precipitation and thus runoff. Land use changes and forestry measures are also observed to be one reason for increased transport of DOC. The effects of brownification extend to ecosystem services like water purification, but also freshwater productivity through limiting light penetration and creating more stable thermal stratification. We studied past trends of organic carbon loading from catchments based on observations since early 1990&amp;#8217;s. We made simulations of loading by the physical Persist and INCA models to three small catchments at the Lammi LTER area. We upscaled simulations to the Kokem&amp;#228;enjoki river basin (17 950 km&lt;sup&gt;2&lt;/sup&gt;). Even though river processes did not play a role in small catchments, they had influence on DOC concentration at the whole river basin. Brownification was driven mainly by the change in climate and decay of organic matter in soil, with smaller impact of land use change on organic soil types. Decrease in sulphur deposition had only minor effect on brownification.&lt;/p&gt;


2004 ◽  
Vol 14 (sp4) ◽  
pp. 263-279 ◽  
Author(s):  
Marcelo C. Bernardes ◽  
Luiz A. Martinelli ◽  
Alex V. Krusche ◽  
Jack Gudeman ◽  
Marcelo Moreira ◽  
...  

2021 ◽  
Author(s):  
Luis Colocho Hurtarte ◽  
Klaus Jarosch ◽  
Konstantin Gavazov ◽  
Aleksander Muniz ◽  
Christoph Müller ◽  
...  

2020 ◽  
Author(s):  
Marco Panettieri ◽  
Denis Courtier-Murias ◽  
Cornelia Rumpel ◽  
Marie-France Dignac ◽  
Gonzalo Almendros ◽  
...  

2017 ◽  
Author(s):  
Annelie Säurich ◽  
Bärbel Tiemeyer ◽  
Axel Don ◽  
Michel Bechtold ◽  
Wulf Amelung ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document