scholarly journals Supplementary material to "Land use impact on carbon mineralization is mainly caused by variation of particulate organic matter content rather than of soil structure"

Author(s):  
Steffen Schlüter ◽  
Tim Roussety ◽  
Lena Rohe ◽  
Vusal Guliyev ◽  
Evgenia Blagodatskaya ◽  
...  
2021 ◽  
Author(s):  
Steffen Schlüter ◽  
Tim Roussety ◽  
Lena Rohe ◽  
Vusal Guliyev ◽  
Evgenia Blagodatskaya ◽  
...  

Abstract. Land use is known to exert a dominant impact on a range of essential soil functions like water retention, carbon sequestration, matter cycling and plant growth. At the same time, land use management is known to have a strong influence on soil structure, e.g. through bioturbation, tillage and compaction. However, it is often unclear whether differences in soil structure are the actual cause for differences in soil functions or just co-occurring. This impact of land use (conventional and organic farming, intensive and extensive meadow, extensive pasture) on the relationship between soil structure and short-term carbon mineralization was investigated at the Global Change Exploratory Facility, in Bad Lauchstädt, Germany. Intact topsoil cores (n = 75) were sampled from each land use type at the early growing season. Soil structure and microbial activity were measured using X-ray computed tomography and respirometry, respectively. Grasslands had a greater microbial activity than croplands, both in terms of basal respiration and rate of carbon mineralization during growth. This was caused by a larger amount of particulate organic matter (POM) in the topsoil of grasslands. The frequently postulated dependency of basal respiration on soil moisture was absent even though some cores were apparently water limited. This finding was related to microenvironments shaping microbial hotspots where the decomposition of plant residues was obviously decoupled from water limitation in bulk soil. Differences in microstructural properties between land uses were surprisingly small, mainly due huge variability induced by patterns of compacted clods and loose areas caused by tillage in cropland soils. The most striking difference was larger macropore diameters in grasslands soil due to the presence of large biopores that are periodically destroyed in croplands. Variability of basal respiration among all soil cores amounted to more than one order of magnitude (0.08–1.42 µg CO2-C h−1 g−1 soil) and was best described by POM mass (R2 = 0.53, p < 0.001). Predictive power was hardly improved by considering all bulk, microstructure and microbial properties jointly. The predictive power of image-derived microstructural properties was low, because aeration was not limiting carbon mineralization and was sustained by pores smaller than the image resolution limit (< 30 µm). The rate of glucose mineralization during growth was explained well by substrate-induced respiration (R2 = 0.84) prior to growth, which was in turn correlated with total microbial biomass, basal respiration and POM mass and again not affected by pore metrics. These findings stress that soil structure had little relevance in predicting carbon mineralization in well-aerated soil, as this predominantly took place in microbial hotspots around degrading POM that was detached from the pore structure and moisture of the bulk soil. Land use therefore affects carbon mineralization in well-aerated soil mainly by the amount and quality of labile carbon.


Author(s):  
Trina Stephens

Land‐use change can have a major impact on soil properties, leading to long‐term changes in soilnutrient cycling rates and carbon storage. While a substantial amount of research has been conducted onland‐use change in tropical regions, empirical evidence of long‐term conversion of forested land toagricultural land in North America is lacking. Pervasive deforestation for the sake of agriculturethroughout much of North America is likely to have modified soil properties, with implications for theglobal climate. Here, we examined the response of physical, chemical and biological soil properties toconversion of forest to agricultural land (100 years ago) on Roebuck Farm near Perth, Ontario, Canada.Soil samples were collected at three sites from under forest and agricultural vegetative cover on bothhigh‐ and low‐lying topographic positions (12 locations in total; soil profile sampled to a depth of 40cm).Our results revealed that bulk density, pH, and nitrate concentrations were all higher in soils collectedfrom cultivate sites. In contrast, samples from forested sites exhibited greater water‐holding capacity,porosity, organic matter content, ammonia concentrations and cation exchange capacity. Many of these characteristics are linked to greater organic matter abundance and diversity in soils under forestvegetation as compared with agricultural soils. Microbial activity and Q10 values were also higher in theforest soils. While soil properties in the forest were fairly similar across topographic gradients, low‐lyingpositions under agricultural regions had higher bulk density and organic matter content than upslopepositions, suggesting significant movement of material along topographic gradients. Differences in soilproperties are attributed largely to increased compaction and loss of organic matter inputs in theagricultural system. Our results suggest that the conversion of forested land cover to agriculture landcover reduces soil quality and carbon storage, alters long‐term site productivity, and contributes toincreased atmospheric carbon dioxide concentrations.


2018 ◽  
Vol 13 (No. 3) ◽  
pp. 140-149 ◽  
Author(s):  
Šimanský Vladimír ◽  
Lukáč Martin

Soil structure is a key determinant of many soil environmental processes and is essential for supporting terrestrial ecosystem productivity. Management of arable soils plays a significant role in forming and maintaining their structure. Between 1994 and 2011, we studied the influence of soil tillage and fertilisation regimes on the stability of soil structure of loamy Haplic Luvisol in a replicated long-term field experiment in the Dolná Malanta locality (Slovakia). Soil samples were repeatedly collected from plots exposed to the following treatments: conventional tillage (CT) and minimum tillage (MT) combined with conventional (NPK) and crop residue-enhanced fertilisation (CR+NPK). MT resulted in an increase of critical soil organic matter content (St) by 7% in comparison with CT. Addition of crop residues and NPK fertilisers significantly increased St values (by 7%) in comparison with NPK-only treatments. Soil tillage and fertilisation did not have any significant impact on other parameters of soil structure such as dry sieving mean weight diameters (MWD), mean weight diameter of water-stable aggregates (MWD<sub>WSA</sub>), vulnerability coefficient (Kv), stability index of water-stable aggregates (Sw), index of crusting (Ic), contents of water-stable macro- (WSA<sub>ma</sub>) and micro-aggregates (WSA<sub>mi</sub>). Ic was correlated with organic matter content in all combinations of treatments. Surprisingly, humus quality did not interact with soil management practices to affect soil structure parameters. Higher sums of base cations, CEC and base saturation (Bs) were linked to higher Sw values, however higher values of hydrolytic acidity (Ha) resulted in lower aggregate stability in CT treatments. Higher content of K<sup>+</sup> was responsible for higher values of MWD<sub>WSA </sub>and MWD in CT. In MT, contents of Ca<sup>2+</sup>, Mg<sup>2+ </sup>and Na<sup>+</sup> were significantly correlated with contents of WSA<sub>mi </sub>and WSA<sub>ma</sub>. Higher contents of Na<sup>+</sup> negatively affected St values and positive correlations were detected between Ca<sup>2+</sup>, Mg<sup>2+ </sup>and Na<sup>+</sup> and Ic in NPK treatments.


Author(s):  
Vito Ferro ◽  
Vincenzo Bagarello

Field plots are often used to obtain experimental data (soil loss values corresponding to different climate, soil, topographic, crop, and management conditions) for predicting and evaluating soil erosion and sediment yield. Plots are used to study physical phenomena affecting soil detachment and transport, and their sizes are determined according to the experimental objectives and the type of data to be obtained. Studies on interrill erosion due to rainfall impact and overland flow need small plot width (2–3 m) and length (< 10 m), while studies on rill erosion require plot lengths greater than 6–13 m. Sites must be selected to represent the range of uniform slopes prevailing in the farming area under consideration. Plots equipped to study interrill and rill erosion, like those used for developing the Universal Soil Loss Equation (USLE), measure erosion from the top of a slope where runoff begins; they must be wide enough to minimize the edge or border effects and long enough to develop downslope rills. Experimental stations generally include bounded runoff plots of known rea, slope steepness, slope length, and soil type, from which both runoff and soil loss can be monitored. Once the boundaries defining the plot area are fixed, a collecting equipment must be used to catch the plot runoff. A conveyance system (H-flume or pipe) carries total runoff to a unit sampling the sediment and a storage system, such as a sequence of tanks, in which sediments are accumulated. Simple methods have been developed for estimating the mean sediment concentration of all runoff stored in a tank by using the vertical concentration profile measured on a side of the tank. When a large number of plots are equipped, the sampling of suspension and consequent oven-drying in the laboratory are highly time-consuming. For this purpose, a sampler that can extract a column of suspension, extending from the free surface to the bottom of the tank, can be used. For large plots, or where runoff volumes are high, a divisor that splits the flow into equal parts and passes one part in a storage tank as a sample can be used. Examples of these devices include the Geib multislot divisor and the Coshocton wheel. Specific equipment and procedures must be employed to detect the soil removed by rill and gully erosion. Because most of the soil organic matter is found close to the soil surface, erosion significantly decreases soil organic matter content. Several studies have demonstrated that the soil removed by erosion is 1.3–5 times richer in organic matter than the remaining soil. Soil organic matter facilitates the formation of soil aggregates, increases soil porosity, and improves soil structure, facilitating water infiltration. The removal of organic matter content can influence soil infiltration, soil structure, and soil erodibility.


2014 ◽  
Vol 484-485 ◽  
pp. 127-131
Author(s):  
Han Zheng Kong ◽  
Ju Sheng Jiang ◽  
Zong Bo Peng ◽  
Yu Jie Zhou

In this paper, we take secondary forest, orchard, and woodland soils of rubber in different planting years as a research subject and analyze the influence of different land use on soil organic matter. The results show that land use has significant influence on soil organic matter components (p <0.01). We conducted a survey and sampling on 10 age classes of Hainan Dongfang Daguangba (3, 8, 13, 18,23,29,33,35,38,42 years old) rubber plantation plots soil layer (0 cm-20 cm, 20 cm-40 cm), and conducted in-house testing analysis of its organic matter content, and achieved preliminary exploration that soil organic matter content of different land use patterns in Dongfang City in Hainan: secondary forest> orchard> rubber plantation. These differences are mainly due to the litter under different tillage quantity, quality and variety of management measures. While orchards and rubber plantation have used different tillage method, as a plantation by human, it was greatly influenced by human.


2003 ◽  
Vol 22 (4) ◽  
pp. 106-112 ◽  
Author(s):  
C. C. Du Preez

In this review the most recent approach to sustainable land use and the role that soil quality plays therein are described briefly. The requirements to which indicators must conform for the meaningful evaluation of the quality of soil and sustainability of land use are also elucidated. Thereafter the processes of physical, chemical and biological soil degradation are given. A concise discussion follows on the extent of physical and chemical soil degradation in South Africa, of which there is reliable information. Biological soil degradation is treated in more detail. Attention is given firstly to the role of soil organic matter in biogeochemical cycles. Thereafter the influence of different land use systems in the central parts of South Africa on the organic matter content and consequently the nitrogen, phosphorus and sulphur reserves of soils is discussed by using examples. The conclusion is that organic matter is an important indicator of soil quality and thus also of sustainable land use.


2012 ◽  
Vol 9 (8) ◽  
pp. 11293-11330
Author(s):  
S.-W. Duan ◽  
S. S. Kaushal

Abstract. Rising water temperatures due to climate and land-use change can accelerate biogeochemical fluxes from sediments to streams. We investigated impacts of increased streamwater temperatures on sediment fluxes of dissolved organic carbon (DOC), nitrate, soluble reactive phosphorus (SRP) and sulfate. Experiments were conducted at 8 long-term monitoring sites across land use (forest, agricultural, suburban, and urban) at the Baltimore Ecosystem Study Long-Term Ecological Research (LTER) site in the Chesapeake Bay watershed. Over 20 yr of routine water temperature data showed substantial variation across seasons and years, and lab incubations were conducted at 4 temperatures (4 °C, 15 °C, 25 °C and 35 °C) for 48 h. Results indicated: (1) warming consistently increased sediment DOC fluxes to overlying water across land use but decreased DOC quality via increases in the humic-like to protein-like fractions (2) warming consistently increased SRP fluxes from sediments to overlying water across land use (3) warming increased sulfate fluxes from sediments to overlying water at rural/suburban sites but decreased sulfate fluxes at urban sites likely due to sulfate reduction (4) nitrate fluxes showed an increasing trend with temperature but with larger variability than SRP. Sediment fluxes of nitrate, SRP and sulfate were strongly related to watershed urbanization and organic matter content. Using relationships of sediment fluxes with temperature, we estimate a 5 °C warming would increase the annual sediment release by 1.0–3.9 times. In addition to hydrologic variability, understanding warming impacts on coupled biogeochemical cycles in streams (e.g., organic matter mineralization, P sorption, nitrification, denitrification, and sulfate reduction) is critical for forecasting changes in carbon and nutrient exports across watershed land use.


Sign in / Sign up

Export Citation Format

Share Document