scholarly journals The Holocene sedimentary record of cyanobacterial glycolipids in the Baltic Sea: Evaluation of their application as tracers of past nitrogen fixation

2017 ◽  
Author(s):  
Martina Sollai ◽  
Ellen C. Hopmans ◽  
Nicole J. Bale ◽  
Anchelique Mets ◽  
Matthias Moros ◽  
...  

Abstract. Heterocyst glycolipids (HGs) are lipids exclusively produced by heterocystous dinitrogen-fixing cyanobacteria. The Baltic Sea is an ideal environment to study the distribution of HGs and test their potential as biomarkers because of its recurring summer phytoplankton blooms, dominated by a few heterocystous cyanobacterial species. A multicore and a gravity core from the Gotland basin were analyzed to determine the abundance and distribution of HGs at high resolution to investigate the changes in past cyanobacterial communities during the Holocene. The HG distribution of the sediments deposited during the Modern Warm Period (MoWP) was compared with those of cultivated heterocystous cyanobacteria, revealing high similarity. However, the abundance of HGs dropped substantially with depth and this may be caused by either a decrease of the cyanobacterial blooms or diagenesis, resulting in partial destruction of the HGs. The record also shows that the HGs distribution has remained stable since the Baltic has turned into a brackish semi-enclosed basin ~ 7200 yrs BP. This suggests that the heterocystous cyanobacterial species composition remained relatively stable as well. During the earlier freshwater phase of the Baltic (i.e. the Ancylus Lake phase) the distribution of the HGs varied much more than in the subsequent brackish phase and the absolute abundance of HGs was much lower than during the brackish phase. This suggests that the cyanobacterial community adjusted to the different environmental conditions in the basin. Our results confirm the potential of HGs as specific biomarker of heterocystous cyanobacteria in paleo-environmental studies.

2017 ◽  
Vol 14 (24) ◽  
pp. 5789-5804 ◽  
Author(s):  
Martina Sollai ◽  
Ellen C. Hopmans ◽  
Nicole J. Bale ◽  
Anchelique Mets ◽  
Lisa Warden ◽  
...  

Abstract. Heterocyst glycolipids (HGs) are lipids exclusively produced by heterocystous dinitrogen-fixing cyanobacteria. The Baltic Sea is an ideal environment to study the distribution of HGs and test their potential as biomarkers because of its recurring summer phytoplankton blooms, dominated by a few heterocystous cyanobacterial species of the genera Nodularia and Aphanizomenon. A multi-core and a gravity core from the Gotland Basin were analyzed to determine the abundance and distribution of a suite of selected HGs at a high resolution to investigate the changes in past cyanobacterial communities during the Holocene. The HG distribution of the sediments deposited during the Modern Warm Period (MoWP) was compared with those of cultivated heterocystous cyanobacteria, including those isolated from Baltic Sea waters, revealing high similarity. However, the abundance of HGs dropped substantially with depth, and this may be caused by either a decrease in the occurrence of the cyanobacterial blooms or diagenesis, resulting in partial destruction of the HGs. The record also shows that the HG distribution has remained stable since the Baltic turned into a brackish semi-enclosed basin ∼ 7200 cal. yr BP. This suggests that the heterocystous cyanobacterial species composition remained relatively stable as well. During the earlier freshwater phase of the Baltic (i.e., the Ancylus Lake and Yoldia Sea phases), the distribution of the HGs varied much more than in the subsequent brackish phase, and the absolute abundance of HGs was much lower than during the brackish phase. This suggests that the cyanobacterial community adjusted to the different environmental conditions in the basin. Our results confirm the potential of HGs as a specific biomarker of heterocystous cyanobacteria in paleo-environmental studies.


Boreas ◽  
2021 ◽  
Author(s):  
Ole Bennike ◽  
Jørn Bo Jensen ◽  
Niels Nørgaard‐Pedersen ◽  
Katrine Juul Andresen ◽  
Marit‐Solveig Seidenkrantz ◽  
...  

AMBIO ◽  
2001 ◽  
Vol 30 (4) ◽  
pp. 172-178 ◽  
Author(s):  
Terttu Finni ◽  
Kaisa Kononen ◽  
Riitta Olsonen ◽  
Kerstin Wallström

Author(s):  
Robert Kostecki

AbstractFour sediment cores from the southern part of the Arkona Basin were analyzed in terms of their geochemical composition, age and stratigraphy. The main stages of the Baltic Sea: the Baltic Ice Lake, the Ancylus Lake and the Littorina Sea were identified in all the analyzed cores. The data confirmed the high water fluctuation and significant environmental changes during the Baltic Sea evolution in the Late-Glacial and the Holocene. The signs of the second regression of the Baltic Ice Lake, dated at around 11 000 cal BP, were identified at a depth of 24 m b.s.l. Regression of the Ancylus Lake, dated at 9300 cal BP, was identified at a depth of 23 m b.s.l. The most pronounced period was the transition stage between the Ancylus Lake and the Littorina Sea. The record of the Littorina Sea onset in the sediments of the Arkona Basin is marked as a sudden increase in loss on ignition, biogenic silica, magnesium, calcium, iron and strontium. The age of the Littorina Sea in the Arkona Basin was estimated as younger than 8200 cal BP.


2021 ◽  
Vol 9 ◽  
Author(s):  
Dalton S. Hardisty ◽  
Natascha Riedinger ◽  
Noah J. Planavsky ◽  
Dan Asael ◽  
Steven M. Bates ◽  
...  

Low oxygen conditions in the modern Baltic Sea are exacerbated by human activities; however, anoxic conditions also prevailed naturally over the Holocene. Few studies have characterized the specific paleoredox conditions (manganous, ferruginous, euxinic) and their frequency in southern Baltic sub-basins during these ancient events. Here, we apply a suite of isotope systems (Fe, Mo, S) and associated elemental proxies (e.g., Fe speciation, Mn) to specifically define water column redox regimes through the Baltic Holocene in a sill-proximal to sill-distal transect (Lille Belt, Bornholm Basin, Landsort Deep) using samples collected during the Integrated Ocean Drilling Program Expedition 347. At the sill-proximal Lille Belt, there is evidence for anoxic manganous/ferruginous conditions for most of the cored interval following the transition from the Ancylus Lake to Littorina Sea but with no clear excursion to more reducing or euxinic conditions associated with the Holocene Thermal Maximum (HTM) or Medieval Climate Anomaly (MCA) events. At the sill-distal southern sub-basin, Bornholm Basin, a combination of Fe speciation, pore water Fe, and solid phase Mo concentration and isotope data point to manganous/ferruginous conditions during the Ancylus Lake-to-Littorina Sea transition and HTM but with only brief excursions to intermittently or weakly euxinic conditions during this interval. At the western Baltic Proper sub-basin, Landsort Deep, new Fe and S isotope data bolster previous Mo isotope records and Fe speciation evidence for two distinct anoxic periods but also suggest that sulfide accumulation beyond transient levels was largely restricted to the sediment-water interface. Ultimately, the combined data from all three locations indicate that Fe enrichments typically indicative of euxinia may be best explained by Fe deposition as oxides following events likely analogous to the periodic incursions of oxygenated North Sea waters observed today, with subsequent pyrite formation in sulfidic pore waters. Additionally, the Mo isotope data from multiple Baltic Sea southern basins argue against restricted and widespread euxinic conditions, as has been demonstrated in the Baltic Proper and Bothnian Sea during the HTM or MCA. Instead, similar to today, each past Baltic anoxic event is characterized by redox conditions that become progressively more reducing with increasing distance from the sill.


2019 ◽  
Author(s):  
Jérôme Kaiser ◽  
Norbert Wasmund ◽  
Mati Kahru ◽  
Anna K. Wittenborn ◽  
Regina Hansen ◽  
...  

Abstract. Summer cyanobacterial blooms represent a threat for the Baltic Sea ecosystem, causing deoxygenation of the bottom water and the spread of the so-called dead zones. The time history of the Baltic Sea cyanobacterial blooms is known from in situ and satellite observations since the early 1980s, but still not well understood. By comparing both weekly-resolved trap sediments and a well-dated sediment core from the Eastern Gotland Basin with monitoring and satellite cyanobacterial data of the last ca. 35 years, it is shown here that 6- and 7-methylheptadecane lipids (expressed as 6+7Me-C17:0) are robust semi-quantitative biomarkers for diazotrophic cyanobacteria, and likely mainly for Nodularia spumigena. Using this organic proxy, it was thus possible to reconstruct the history of cyanobacterial blooms beyond the observational period with a resolution of 2–4 years since 1860. Cyanobacteria were constantly present, but in relatively low abundance until 1920, when they started to alternate between periods with high and low abundance. Interestingly, there seems to be no significant increase in cyanobacterial abundance in the 1950s, when eutrophication and deoxygenation of the Baltic Sea increased considerably. Decadal to multi-decadal fluctuations are likely rather related to variability in the Baltic Sea surface temperature and, ultimately, to the Atlantic Multidecadal Oscillation. A 7000 years long 6+7Me-C17:0 record from the Bothnian Sea also suggests a relationship with the mean summer temperature in the Baltic Sea region, but at a multi-centennial to multi-millennial timescale. The intensity of the cyanobacterial blooms in the Baltic Sea is thus likely mainly related to natural processes such as temperature variability, at least at a multi-decadal to multi-millennial timescale.


2020 ◽  
Vol 17 (9) ◽  
pp. 2579-2591
Author(s):  
Jérôme Kaiser ◽  
Norbert Wasmund ◽  
Mati Kahru ◽  
Anna K. Wittenborn ◽  
Regina Hansen ◽  
...  

Abstract. Summer cyanobacterial blooms represent a threat to the Baltic Sea ecosystem, causing deoxygenation of the bottom water and the spread of the so-called dead zones. The history of the Baltic Sea cyanobacterial blooms is known from in situ and satellite observations since the early 1980s but is still not well understood. By comparing both weekly resolved sediment trap material and a well-dated sediment core from the eastern Gotland Basin with monitoring and satellite cyanobacterial data of the last ca. 35 years, it is shown here that 6- and 7-methylheptadecane lipids (expressed as 6+7Me-C17 : 0) may be potentially considered semiquantitative biomarkers for diazotrophic cyanobacteria, and more specifically for Nodularia spumigena. Using this organic proxy, it was thus possible to reconstruct the history of cyanobacterial blooms beyond the observational period with a resolution of 2–4 years since 1860. Cyanobacteria were constantly present but in relatively low abundance until 1920, when they started to alternate between periods with high and low abundance. Interestingly, there seems to be no significant increase in cyanobacterial abundance in the 1950s, when eutrophication and deoxygenation of the Baltic Sea increased considerably. While the early increase in cyanobacteria may be related to a small increase in phosphorus loading, decadal to multi-decadal fluctuations are likely related to variability in the Baltic Sea surface temperature and, ultimately, to the Atlantic Multi-decadal Oscillation. A 7000-year 6+7Me-C17 : 0 record from the Bothnian Sea also suggests a relationship with the mean summer temperature in the Baltic Sea region but at a multi-centennial to multi-millennial timescale. The intensity of the cyanobacterial blooms in the Baltic Sea is thus likely mainly related to natural processes such as temperature variability, at least at a multi-decadal to multi-millennial timescale.


Sign in / Sign up

Export Citation Format

Share Document