Stages of the Baltic Sea evolution in the geochemical record and radiocarbon dating of sediment cores from the Arkona Basin

Author(s):  
Robert Kostecki

AbstractFour sediment cores from the southern part of the Arkona Basin were analyzed in terms of their geochemical composition, age and stratigraphy. The main stages of the Baltic Sea: the Baltic Ice Lake, the Ancylus Lake and the Littorina Sea were identified in all the analyzed cores. The data confirmed the high water fluctuation and significant environmental changes during the Baltic Sea evolution in the Late-Glacial and the Holocene. The signs of the second regression of the Baltic Ice Lake, dated at around 11 000 cal BP, were identified at a depth of 24 m b.s.l. Regression of the Ancylus Lake, dated at 9300 cal BP, was identified at a depth of 23 m b.s.l. The most pronounced period was the transition stage between the Ancylus Lake and the Littorina Sea. The record of the Littorina Sea onset in the sediments of the Arkona Basin is marked as a sudden increase in loss on ignition, biogenic silica, magnesium, calcium, iron and strontium. The age of the Littorina Sea in the Arkona Basin was estimated as younger than 8200 cal BP.

2018 ◽  
Vol 37 (2) ◽  
pp. 403-429 ◽  
Author(s):  
Jeroen Groeneveld ◽  
Helena L. Filipsson ◽  
William E. N. Austin ◽  
Kate Darling ◽  
David McCarthy ◽  
...  

Abstract. Current climate and environmental changes strongly affect shallow marine and coastal areas like the Baltic Sea. This has created a need for a context to understand the severity and potential outcomes of such changes. The context can be derived from paleoenvironmental records during periods when comparable events happened in the past. In this study, we explore how varying bottom water conditions across a large hydrographic gradient in the Baltic Sea affect benthic foraminiferal faunal assemblages and the geochemical composition of their calcite tests. We have conducted both morphological and molecular analyses of the faunas and we evaluate how the chemical signatures of the bottom waters are recorded in the tests of several species of benthic foraminifera. We focus on two locations, one in the Kattegat (western Baltic Sea) and one in Hanö Bay (southern Baltic Sea). We show that seawater Mn∕Ca, Mg∕Ca, and Ba∕Ca (Mn∕Casw, Mg∕Casw, and Ba∕Casw) variations are mainly controlled by dissolved oxygen concentration and salinity. Their respective imprints on the foraminiferal calcite demonstrate the potential of Mn∕Ca as a proxy for hypoxic conditions, and Ba∕Ca as a proxy for salinity in enclosed basins such as the Baltic Sea. The traditional use of Mg∕Ca as a proxy to reconstruct past seawater temperatures is not recommended in the region, as it may be overprinted by the large variations in salinity (specifically on Bulimina marginata), Mg∕Casw, and possibly also the carbonate system. Salinity is the main factor controlling the faunal assemblages: a much more diverse fauna occurs in the higher-salinity (∼32) Kattegat than in the low-salinity (∼15) Hanö Bay. Molecular identification shows that only Elphidium clavatum occurs at both locations, but other genetic types of both genera Elphidium and Ammonia are restricted to either low- or high-salinity locations. The combination of foraminiferal geochemistry and environmental parameters demonstrates that in a highly variable setting like the Baltic Sea, it is possible to separate different environmental impacts on the foraminiferal assemblages and therefore use Mn∕Ca, Mg∕Ca, and Ba∕Ca to reconstruct how specific conditions may have varied in the past.


2002 ◽  
Vol 44 (6) ◽  
pp. 565-570 ◽  
Author(s):  
M. Ricking ◽  
H.-M. Schulz

1992 ◽  
Vol 114 (2) ◽  
pp. 165-180 ◽  
Author(s):  
Barbara Thulin ◽  
Göran Possnert ◽  
Irmeli Vuorela

2018 ◽  
Vol 75 (7) ◽  
pp. 2463-2475 ◽  
Author(s):  
Romain Frelat ◽  
Alessandro Orio ◽  
Michele Casini ◽  
Andreas Lehmann ◽  
Bastien Mérigot ◽  
...  

Abstract Fisheries and marine ecosystem-based management requires a holistic understanding of the dynamics of fish communities and their responses to changes in environmental conditions. Environmental conditions can simultaneously shape the spatial distribution and the temporal dynamics of a population, which together can trigger changes in the functional structure of communities. Here, we developed a comprehensive framework based on complementary multivariate statistical methodologies to simultaneously investigate the effects of environmental conditions on the spatial, temporal and functional dynamics of species assemblages. The framework is tested using survey data collected during more than 4000 fisheries hauls over the Baltic Sea between 2001 and 2016. The approach revealed the Baltic fish community to be structured into three sub-assemblages along a strong and temporally stable salinity gradient decreasing from West to the East. Additionally, we highlight a mismatch between species and functional richness associated with a lower functional redundancy in the Baltic Proper compared with other sub-areas, suggesting an ecosystem more susceptible to external pressures. Based on a large dataset of community data analysed in an innovative and comprehensive way, we could disentangle the effects of environmental changes on the structure of biotic communities—key information for the management and conservation of ecosystems.


2021 ◽  
Author(s):  
Tuomas Kärnä ◽  
Ida Ringgaard ◽  
Vasily Korabel ◽  
Adam Nord ◽  
Patrik Ljungemyr ◽  
...  

<p>We present Nemo-Nordic 2.0, the latest version of the operational marine forecasting model for the Baltic Sea used and developed in the Baltic Monitoring Forecasting Centre (BAL MFC) under the Copernicus Marine Environment Monitoring Service (CMEMS). The most notable differences between Nemo-Nordic 2.0 and its predecessor Nemo-Nordic 1.0 are the switch from NEMO 3.6 to NEMO 4.0 and an increase in horizontal resolution from 2 to 1 nautical mile. In addition, the model's bathymetry and bottom friction formulation have been updated. The model configuration was specially tuned to represent Major Baltic Inflow events. Focusing on a 2-year validation period from October 1, 2014, covering one Major Baltic Inflow event, Nemo-Nordic 2.0 simulates Sea Surface Height (SSH) well: centralized Root-Mean-Square Deviation (CRMSD) is within 10 cm for most stations outside the Inner Danish Waters. CRMSD is higher at some stations where small-scale topographical features cannot be correctly resolved. SSH variability tends to be overestimated in the Baltic Sea and underestimated in the Inner Danish Waters. Nemo-Nordic 2.0 represents Sea Surface Temperature (SST) and Salinity (SSS) well, although there is a negative bias around -0.5°C in SST. The 2014 Major Baltic Inflow event is well reproduced. The simulated salt pulse agrees well with observations in the Arkona basin and progresses into the Gotland basin in 3 to 4 months.</p>


2010 ◽  
Vol 7 (8) ◽  
pp. 2567-2580 ◽  
Author(s):  
L. Zillén ◽  
D. J. Conley

Abstract. During the last century (1900s) industrialized forms of agriculture and human activities have caused eutrophication of Baltic Sea waters. As a consequence, the hypoxic zone in the Baltic Sea has increased, especially during the last 50 years, and has caused severe ecosystem disturbance. Climate forcing has been proposed to be responsible for the reported trends in hypoxia (< 2 mg/l O2) both during the last c. 100 years (since c. 1900 AD) and the Medieval Period. By contrast, investigations of the degree of anthropogenic forcing on the ecosystem on long time-scales (millennial and greater) have not been thoroughly addressed. This paper examines evidence for anthropogenic disturbance of the marine environment beyond the last century through the analysis of the human population growth, technological development and land-use changes in the drainage area. Natural environmental changes, i.e. changes in the morphology and depths of the Baltic basin and the sills, were probably the main driver for large-scale hypoxia during the early Holocene (8000–4000 cal yr BP). We show that hypoxia during the last two millennia has followed the general expansion and contraction trends in Europe and that human perturbation has been an important driver for hypoxia during that time. Hypoxia occurring during the Medieval Period coincides with a doubling of the population (from c. 4.6 to 9.5 million) in the Baltic Sea watershed, a massive reclamation of land in both established and marginal cultivated areas and significant increases in soil nutrient release. The role of climate forcing on hypoxia in the Baltic Sea has yet to be demonstrated convincingly, although it could have helped to sustain hypoxia through enhanced salt water inflows or through changes in hydrological inputs. In addition, cyanobacteria blooms are not natural features of the Baltic Sea as previously deduced, but are a consequence of enhanced phosphorus release from the seabed that occurs during hypoxia.


2021 ◽  
Author(s):  
Mu Lin ◽  
Jixin Qiao ◽  
Xiaolin Hou ◽  
Olaf Dellwig ◽  
Peter Steier ◽  
...  

Abstract Strongly stratified water structure and densely populated catchment make the Baltic Sea one of the most polluted seas. Understanding its circulation pattern and time scale is essential to predict the dynamics of hypoxia, eutrophication, and pollutants. Anthropogenic 236U and 233U have been demonstrated as excellent transient tracers in oceanic studies, but unclear input history and inadequate long-term monitoring records limit their application in the Baltic Sea. From two dated Baltic sediment cores, we obtained high-resolution records of anthropogenic uranium imprints originated from three major human nuclear activities throughout the Atomic Era. Using the novel 233U/236U signature, we distinguished and quantified 236U inputs from global fallout (43.3%-50.5%), Chernobyl accident (< 0.9%), and discharges of civil nuclear industry (48.6%-56.7%) to the Baltic Sea. We estimated the total release of 233U (7-15kg) from the atmospheric nuclear weapons testing, and pinpointed 233U peak signal in the mid-to-late 1950s as a potential time marker for the onset of the Anthropocene Epoch. This work also provides fundamental 236U data for Chernobyl accident and early discharges from civil nuclear facilities, prompting worldwide 233U-236U tracer studies. We anticipate our data to be a broader application in model-observation interdisciplinary research on water circulation and pollutant dynamics in the Baltic Sea.


1969 ◽  
Vol 26 ◽  
pp. 21-24 ◽  
Author(s):  
Jørn Bo Jensen ◽  
Rudolf Endler

The Baltic Sea is an ideal natural laboratory to study the methane cycle in the framework of diagenetic processes. In this paper we present preliminary geological mapping results from project Baltic Gas, a research project with the overall aim to contribute to the development of a scientific basis for long term sustainable use and protection of the Baltic Sea ecosystem. The Baltic Sea is a marginal sea with a strong permanent haline stratification, which leads to oxygen-poor bottom waters, and which is sometimes interrupted by oxygen- rich saltwater flowing in from the North Sea. The history of the Baltic Sea has resulted in deposition of organic-rich Holocene marine sediments that overlie glacial, late-glacial and early Holocene organic-poor sediments.


Sign in / Sign up

Export Citation Format

Share Document