scholarly journals Supplementary material to "A novel isotope pool dilution approach to quantify gross rates of key abiotic and biological processes in the soil phosphorus cycle"

Author(s):  
Wolfgang Wanek ◽  
David Zezula ◽  
Daniel Wasner ◽  
Maria Mooshammer ◽  
Judith Prommer
2019 ◽  
Vol 16 (15) ◽  
pp. 3047-3068 ◽  
Author(s):  
Wolfgang Wanek ◽  
David Zezula ◽  
Daniel Wasner ◽  
Maria Mooshammer ◽  
Judith Prommer

Abstract. Efforts to understand and model the current and future behavior of the global phosphorus (P) cycle are limited by the availability of global data on rates of soil P processes, as well as their environmental controls. Here, we present a novel isotope pool dilution approach using 33P labeling of live and sterile soils, which allows for high-quality data on gross fluxes of soil inorganic P (Pi) sorption and desorption, as well as of gross fluxes of organic P mineralization and microbial Pi uptake to be obtained. At the same time, net immobilization of 33Pi by soil microbes and abiotic sorption can be easily derived and partitioned. Compared with other approaches, we used short incubation times (up to 48 h), avoiding tracer remineralization, which was confirmed by the separation of organic P and Pi using isobutanol fractionation. This approach is also suitable for strongly weathered and P-impoverished soils, as the sensitivity is increased by the extraction of exchangeable bioavailable Pi (Olsen Pi; 0.5 M NaHCO3) followed by Pi measurement using the malachite green assay. Biotic processes were corrected for desorption/sorption processes using adequate sterile abiotic controls that exhibited negligible microbial and extracellular phosphatase activities. Gross rates were calculated using analytical solutions of tracer kinetics, which also allowed for the study of gross soil P dynamics under non-steady-state conditions. Finally, we present major environmental controls of gross P-cycle processes that were measured for three P-poor tropical forest and three P-rich temperate grassland soils.


2019 ◽  
Author(s):  
Wolfgang Wanek ◽  
David Zezula ◽  
Daniel Wasner ◽  
Maria Mooshammer ◽  
Judith Prommer

Abstract. Efforts to understand and model the current and future behavior of the global phosphorus (P) cycle are limited by the availability of global data on gross rates of soil P processes, as well as its environmental controls. We here present a novel isotope pool dilution approach using 33P labelling of live and sterile soils, which allows to obtain high quality data on gross fluxes of soil inorganic P (Pi) sorption and desorption, as well as of gross fluxes of organic P mineralization and microbial Pi uptake. At the same time, net immobilization of 33Pi by soil microbes and abiotic sorption can be easily derived and partitioned. Compared to other approaches, we used short incubation times (up to 48 h), avoiding tracer re-mineralization, which was confirmed by separation of organic P and Pi using isobutanol fractionation. This approach is also suitable for strongly weathered and P impoverished soils, as sensitivity is increased by extraction of exchangeable bio-available Pi (Olsen Pi; 0.5 M NaHCO3) followed by Pi measurement using the malachite green assay. Biotic processes were corrected for desorption/sorption processes by using adequate sterile abiotic controls that exhibited negligible microbial and extracellular phosphatase activities. Gross rates are calculated using analytical solutions of tracer kinetics, which also allows to study gross soil P dynamics under non-steady-state conditions. Finally, we present major environmental controls of gross and net P cycle processes that were measured for three P-poor tropical forest and three P-rich temperate grassland soils.


Geoderma ◽  
2022 ◽  
Vol 410 ◽  
pp. 115672
Author(s):  
Feng Sun ◽  
Lingda Zeng ◽  
Minling Cai ◽  
Matthieu Chauvat ◽  
Estelle Forey ◽  
...  

2021 ◽  
Author(s):  
Mahdi Nakhavali ◽  
Lina M. Mercado ◽  
Iain P. Hartley ◽  
Stephen Sitch ◽  
Fernanda V. Cunha ◽  
...  

2018 ◽  
Vol 4 (02) ◽  
pp. 74-80
Author(s):  
Vishal Prasad ◽  
Shivani Chaudhary ◽  
Anjali Singh

Microbes are an important element of the phosphorus cycle operative in the soil and play significant roles in transference of phosphorus between various soil phosphorus pools. Therefore, there has been continued interest in the usage of soil microbes to improve the phosphorus nutrition of plants and increase the overall efficiency of phosphorus use in agricultural systems. This interest originates from the fact that insufficiency of phosphorus is a common problem in soils all over the world, that a foremost cost for agricultural production is due to phosphate fertilizers and that the efficacy of phosphorus used by plants from soil applied phosphate fertilizers is very poor. Hence, with such issues the role of soil microbes in increasing phosphorus fertility in soils becomes more important. In this review several such aspects concerning the solubilisation and mobilization of soil phosphorus by microorganisms for enhancing soil fertility are discussed.


2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
Fengling Zhu ◽  
Lingyun Qu ◽  
Xuguang Hong ◽  
Xiuqin Sun

Phosphate-solubilizing bacteria (PSB) function in soil phosphorus cycle, increasing the bioavailability of soil phosphorus for plants. Isolation and application of salt-tolerant or halophilic PSB will facilitate the development of saline-alkali soil-based agriculture. A moderately halophilic bacterium was isolated from the sediment of Daqiao saltern on the eastern coast of China, which also performs phosphate-solubilizing ability. The bacterium was assigned to genusKushneriaaccording to its 16S rRNA gene sequence, and accordingly named asKushneriasp. YCWA18. The fastest growth was observed when the culturing temperature was 28∘C and the concentration of NaCl was 6% (w/v). It was founds that the bacterium can survive at a concentration of NaCl up to 20%. At the optimum condition, the bacterium solubilized 283.16 μg/mL phosphorus in 11 days after being inoculated in 200 mL Ca3(PO4)2containing liquid medium, and 47.52 μg/mL phosphorus in 8 days after being inoculated in 200 mL lecithin-containing liquid medium. The growth of the bacterium was concomitant with a significant decrease of acidity of the medium.


2021 ◽  
Author(s):  
Karst J. Schaap ◽  
Lucia Fuchslueger ◽  
Marcel R. Hoosbeek ◽  
Florian Hofhansl ◽  
Nathielly Pires Martins ◽  
...  

Abstract Purpose The tropical phosphorus cycle and its relation to soil phosphorus (P) availability are a major uncertainty in projections of forest productivity. In highly weathered soils with low P concentrations, plant and microbial communities depend on abiotic and biotic processes to acquire P. We explored the seasonality and relative importance of drivers controlling the fluctuation of common P pools via processes such as litter production and decomposition, and soil phosphatase activity. Methods We analyzed intra-annual variation of tropical soil phosphorus pools using a modified Hedley sequential fractionation scheme. In addition, we measured litterfall, the mobilization of P from litter and soil extracellular phosphatase enzyme activity and tested their relation to fluctuations in P- fractions. Results Our results showed clear patterns of seasonal variability of soil P fractions during the year. We found that modeled P released during litter decomposition was positively related to change in organic P fractions, while net change in organic P fractions was negatively related to phosphatase activities in the top 5 cm. Conclusion We conclude that input of P by litter decomposition and potential soil extracellular phosphatase activity are the two main factors related to seasonal soil P fluctuations, and therefore the P economy in P impoverished soils. Organic soil P followed a clear seasonal pattern, indicating tight cycling of the nutrient, while reinforcing the importance of studying soil P as an integrated dynamic system in a tropical forest context.


Sign in / Sign up

Export Citation Format

Share Document