scholarly journals Isolation and Characterization of a Phosphate-Solubilizing Halophilic BacteriumKushneriasp. YCWA18 from Daqiao Saltern on the Coast of Yellow Sea of China

2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
Fengling Zhu ◽  
Lingyun Qu ◽  
Xuguang Hong ◽  
Xiuqin Sun

Phosphate-solubilizing bacteria (PSB) function in soil phosphorus cycle, increasing the bioavailability of soil phosphorus for plants. Isolation and application of salt-tolerant or halophilic PSB will facilitate the development of saline-alkali soil-based agriculture. A moderately halophilic bacterium was isolated from the sediment of Daqiao saltern on the eastern coast of China, which also performs phosphate-solubilizing ability. The bacterium was assigned to genusKushneriaaccording to its 16S rRNA gene sequence, and accordingly named asKushneriasp. YCWA18. The fastest growth was observed when the culturing temperature was 28∘C and the concentration of NaCl was 6% (w/v). It was founds that the bacterium can survive at a concentration of NaCl up to 20%. At the optimum condition, the bacterium solubilized 283.16 μg/mL phosphorus in 11 days after being inoculated in 200 mL Ca3(PO4)2containing liquid medium, and 47.52 μg/mL phosphorus in 8 days after being inoculated in 200 mL lecithin-containing liquid medium. The growth of the bacterium was concomitant with a significant decrease of acidity of the medium.

2017 ◽  
Vol 66 (1) ◽  
pp. 57-65 ◽  
Author(s):  
Jian Zhang ◽  
Peng Cheng Wang ◽  
Ling Fang ◽  
Qi-An Zhang ◽  
Cong Sheng Yan ◽  
...  

Phosphorus is a major essential macronutrient for plant growth, and most of the phosphorus in soil remains in insoluble form. Highly efficient phosphate-solubilizing bacteria can be used to increase phosphorus in the plant rhizosphere. In this study, 13 isolates were obtained from waste mushroom residues, which were composed of cotton seed hulls, corn cob, biogas residues, and wood flour. NBRIP solid medium was used for isolation according to the dissolved phosphorus halo. Eight isolates produced indole acetic acid (61.5%), and six isolates produced siderophores (46.2%). Three highest phosphate-dissolving bacterial isolates, namely, M01, M04, and M11, were evaluated for their beneficial effects on the early growth of tomato plants (Solanum lycopersicum L. Wanza 15). Strains M01, M04, and M11 significantly increased the shoot dry weight by 30.5%, 32.6%, and 26.2%, and root dry weight by 27.1%, 33.1%, and 25.6%, respectively. Based on 16S rRNA gene sequence comparisons and phylogenetic positions, strains M01 and M04 belonged to the genus Acinetobacter, and strain M11 belonged to the genus Ochrobactrum. The findings suggest that waste mushroom residues are a potential resource of plant growth-promoting bacteria exhibiting satisfactory phosphate-solubilizing for sustainable agriculture.


2019 ◽  
Vol 8 (1) ◽  
pp. 86-93
Author(s):  
Gregorius Baskara Aji Nugraha ◽  
Ruli Wandri ◽  
Dwi Asmono

Nugraha et al, 2019. Solubilization of Inorganic Phospate by Burkholderia spp. Associated with Oil Palm Rhizosphere in Mineral Acid Soil. JSLO 8(1):86-93.Phosphate Solubilizing Bacteria (PSB) play important role by enhancing phosphate availability bounded with Al3+ or  Fe3+ in acidic soils to oil palm plants through release the inorganic phosphate by enzyme or organic acids solubilization. The aims of this study were to isolate of PSB from oil palm rhizosphere and to conduct a comparative analysis of the solubility inorganic phosphates source by selected PSB. The ability of 15 selected PSB to grow and solubilize aluminum phosphate (AlPO4) and iron phosphate (FePO4) was examined and identified. The highest phospate solubilising efficiency showed K3.1 isolate with phosphate solubilization index 3.2 on NBRIP media. Quantitative analysis revealed that isolate K3.1 solubilized 53.52 mg/mL phosphate in 5 days after being inoculated in AlPO4 containing liquid medium, isolate A4 solubilized 63.45 mg/mL phosphate in 5 days after being inoculated in FePO4 containing liquid medium accompanied by a decrease in pH of the growth medium. Based on the 16s rRNA gene sequence analysis, isolate K3.1 and A.4 were closely related to Burkholderia arboris and Burkholderia gladioli. This potential isolates can be used in order to make oil palm crops more sustainable especially on marginal soil with low pH and less dependent on inorganic P fertilizers. 


2011 ◽  
Vol 61 (5) ◽  
pp. 1127-1132 ◽  
Author(s):  
Xiaowei Wang ◽  
Yanfen Xue ◽  
Yanhe Ma

A Gram-stain-positive, rod-shaped, non-sporulating, motile and moderately halophilic bacterium, designated strain H96B60T, was isolated from a saline soil sample of the Qaidam basin, China. The strain was facultatively anaerobic. Major end products formed from glucose fermentation were acetate, ethanol and lactic acid. The cell-wall peptidoglycan contained meso-diaminopimelic acid as the diagnostic diamino acid. The isoprenoid quinone component was menaquinone-6 (MK-6). The predominant cellular fatty acids were C16 : 0, anteiso-C13 : 0 and anteiso-C15 : 0. The genomic DNA G+C content of strain H96B60T was 36.2 mol%. Phylogenetic analysis based on comparative 16S rRNA gene sequences indicated that strain H96B60T represented a novel phyletic lineage within the family Bacillaceae and was related most closely to Halolactibacillus species (96.1–96.4 % similarity). Based on the phenotypic, chemotaxonomic and phylogenetic data presented, strain H96B60T is considered to represent a novel species of a new genus, for which the name Streptohalobacillus salinus gen. nov., sp. nov. is proposed. The type strain of Streptohalobacillus salinus is H96B60T ( = DSM 22440T  = CGMCC 1.7733T).


2015 ◽  
Vol 65 (Pt_9) ◽  
pp. 2943-2948 ◽  
Author(s):  
Wonyong Kim ◽  
Chatuphon Siamphan ◽  
Jong-Hwa Kim ◽  
Ampaitip Sukhoom

A Gram-stain-positive, spore-forming, rod-shaped, motile, strictly aerobic bacterium, designated CAU 1183T, was isolated from marine sand and its taxonomic position was investigated by using a polyphasic approach. The bacterium grew optimally at 30 °C, at pH 8.5 and in the presence of 2 % (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain CAU 1183T formed a distinct lineage within the genus Oceanobacillus and exhibited the highest similarity to Oceanobacillus chungangensis CAU 1051T (97.6 %). The strain contained MK-7 as the predominant isoprenoid quinone and anteiso-C15 : 0 was the major cellular fatty acid. The cell-wall peptidoglycan contained meso-diaminopimelic acid. The polar lipid pattern of strain CAU 1183T consisted of diphosphatidylglycerol, phosphatidylglycerol and unidentified lipids, including two phospholipids, two glycolipids, a phosphoglycolipid and two lipids. The G+C content of the genomic DNA was 37.5 mol%. On the basis of phenotypic, chemotaxonomic and phylogenetic data, strain CAU 1183T should be assigned to a novel species in the genus Oceanobacillus, for which the name Oceanobacillus arenosus sp. nov. is proposed. The type strain is CAU 1183T ( = KCTC 33037T = CECT 8560T).


2021 ◽  
Vol 16 (8) ◽  
pp. 110-117
Author(s):  
Kannan Abhirami ◽  
K. Jayakumar

Phosphorous is considered as a major parameter for crop yield. Its availability to plant is independent of its abundance. For the plants to utilize phosphorous, it is to be converted to absorbable form. Here, the part rendered by phosphate solubilizing bacteria is significant for it plays a crucial role in the formation of plant usable phosphate from organic forms. In the present work, an effort had been made to isolate and identify phosphate solubilising bacterial isolate from the rhizhospheric soils of various plants in Ponthenpuzha forest. One of the isolate from Cymbopogon citrates responded positively to Pikovskaya’s medium by producing a halo zone during in vitro culture. Colony features and 16S rRNA sequence analysis identified the isolate as Burkholderia sps. We have reported the presence of genus Burkholderia in the rhizospheric zone of Cymbopogon citratus. Further studies are warranted for species level identification of the isolate.


2021 ◽  
Author(s):  
Musa Ibrahim Saheed ◽  
Beckley Ibrahim Ikhajiagbe

The research investigated the possibility of phosphate solubilizing bacteria (PSB) with plant growthpromoting (PGP) capabilities to improve growth properties of rice plant under ferruginous ultisol (FU) condition through bio-priming strategy. The PSB with PGP properties used in this research were Bacillus cereus strain GGBSU-1, Proteus mirabilis strain TL14-1 and Klebsiella variicola strain AUH-KAM-9 that were previously isolated and characterized following the 16S rRNA gene sequencing. Biosafety analysis of the PSB isolates was conducted using blood agar. The rice seeds were then bio-primed with the PSBs at 3, 12 and 24 hours priming durations and then sown in a composite FU soil sample. Differences in germination bioassay involving SEM, morphology, physiology and biomass parameters were investigated for 15 weeks after bio-priming. The composite FU soil used in the study had high pH, low bioavailable phosphorus, low water holding capacity and high iron levels which has led to a low growth properties of rice seeds without bio-priming in FU soil. Germination parameters was better in seeds bio-primed with the PSBs, especially at 12h priming duration as against seeds without priming. SEM showed more bacterial colonization in the PSB bioprimed seeds. Seed bio-priming of rice seed with Bacillus cereus strain GGBSU-1, Proteus mirabilis strain TL14-1 and Klebsiella variicola strain AUH-KAM-9 under FU soil condition significantly improved seed microbiome, rhizocolonization and soil nutrient properties, thereby enhancing growth properties of the rice plant. This suggest the ability of PSB to solubilize and mineralize soil phosphate and improve its availability and soil property for optimum plant usage in phosphate stressed and iron toxic soils.


2020 ◽  
Vol 10 (2) ◽  
pp. 5161-5173

Phosphorus (P) is one of the essential macronutrients needed for the plant growth, other than nitrogen and potassium. Most phosphorus remains as insoluble form in soils and the plants only can uptake the phosphorus nutrient in soluble forms. Phosphate solubilizing bacteria (PSB) dissolves the phosphorus and make it available for plants. In this study, Soil samples were collected and screened for PSB on PK medium. PSB colonies with the highest phosphate solubilization ability were chosen and used for studying its rhizosphere effect on Capsicum frutescens by pot experiment.. It was evidenced that selected PSB strain could solubilize phosphate in PK medium and modified PK broth. Besides, it provided available phosphorus for plants and enhanced the plant growth in pot experiment.


Author(s):  
Auttaporn Booncharoen ◽  
Wonnop Visessanguan ◽  
Nattakorn Kuncharoen ◽  
Supalurk Yiamsombut ◽  
Pannita Santiyanont ◽  
...  

An aerobic, Gram-stain-positive, endospore-forming, rod-shaped and moderately halophilic strain SKP4-6T, was isolated from shrimp paste (Ka-pi) collected from Samut Sakhon Province, Thailand. Phylogenetic analysis revealed that strain SKP4-6T belonged to the genus Halobacillus and was most closely related to Halobacillus salinus JCM 11546T (98.6 %), Halobacillus locisalis KCTC 3788T (98.6 %) and Halobacillus yeomjeoni KCTC 3957T (98.6 %) based on 16S rRNA gene sequence similarity. The digital DNA–DNA hybridization (dDDH) and average nucleotide identity (ANI) values between strain SKP4-6T and its related species were 18.2–19.3 % and 69.84–84.51 %, respectively, which were lower than the threshold recommended for species delineation. The strain grew optimally at 30–40 °C, at pH 7.0 and with 10–15 % (w/v) NaCl. It contained l-Orn–d-Asp in the cell wall peptidoglycan. The DNA G+C content was 44.8 mol%. The major fatty acids were iso-C15 : 0, anteiso-C15 : 0 and anteiso-C17 : 0. The predominant isoprenoid quinone was MK-7. Phosphatidylglycerol and diphosphatidylglycerol were present as major polar lipids. Based on this polyphasic approach, digital DNA–DNA relatedness and ANI values, strain SKP4-6T represents a novel species of the genus Halobacillus , for which the name Halobacillus fulvus sp. nov. is proposed. The type strain is SKP4-6T (=JCM 32624T=TISTR 2595T).


Author(s):  
Lingmin Jiang ◽  
Won Yong Jung ◽  
Zhun Li ◽  
Mi-Kyung Lee ◽  
Seung-Hwan Park ◽  
...  

A Gram-stain-positive, facultatively anaerobic, endospore-forming, rod-shaped strain, AGMB 02131T, which grew at 20–40 °C (optimum 30 °C), pH 3.0–11.0 (optimum pH 4.0) and in the presence of 0–18 % (w/v) NaCl (optimum 10 %), was isolated from a cow faecal sample and identified as a novel strain using a polyphasic taxonomic approach. The phylogenetic analysis based on 16S rRNA gene sequences along with the whole genome (92 core gene sets) revealed that AGMB 02131T formed a group within the genus Peribacillus , and showed the highest sequence similarity with Peribacillus endoradicis DSM 28131T (96.9 %), following by Peribacillus butanolivorans DSM 18926T (96.6 %). The genome of AGMB 02131T comprised 70 contigs, the chromosome length was 4 038 965 bp and it had a 38.5 % DNA G+C content. Digital DNA–DNA hybridization revealed that AGMB 02131T displayed 21.4 % genomic DNA relatedness with the most closely related strain, P. butanolivorans DSM 18926T. AGMB 02131T contains all of the conserved signature indels that are specific for members of the genus Peribacillus . The major cellular fatty acids (>10 %) of AGMB 02131T were C18 : 1ω9c, C18:0 and C16 : 0. The major polar lipids present were diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. On the basis of the phenotypic, phylogenetic, genomic and chemotaxonomic features, AGMB 02131T represents a novel species of the genus Peribacillus , for which the name Peribacillus faecalis sp. nov. is proposed. The type strain is AGMB 02131T (=KCTC 43221T=CCTCC AB 2020077T).


2017 ◽  
Vol 39 (11) ◽  
Author(s):  
Guzel R. Kudoyarova ◽  
Lidiya B. Vysotskaya ◽  
Tatiana N. Arkhipova ◽  
Ludmila Yu. Kuzmina ◽  
Nailya F. Galimsyanova ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document