Comment on "Estimation aboveground carbon density and its uncertainty in Borneo's structurally complex tropical forests using airborne laser scanning"

2018 ◽  
Author(s):  
Anonymous
2018 ◽  
Vol 5 (1) ◽  
Author(s):  
David A. Coomes ◽  
Daniel Šafka ◽  
James Shepherd ◽  
Michele Dalponte ◽  
Robert Holdaway

Abstract Background Forests are a key component of the global carbon cycle, and research is needed into the effects of human-driven and natural processes on their carbon pools. Airborne laser scanning (ALS) produces detailed 3D maps of forest canopy structure from which aboveground carbon density can be estimated. Working with a ALS dataset collected over the 8049-km2 Wellington Region of New Zealand we create maps of indigenous forest carbon and evaluate the influence of wind by examining how carbon storage varies with aspect. Storms flowing from the west are a common cause of disturbance in this region, and we hypothesised that west-facing forests exposed to these winds would be shorter than those in sheltered east-facing sites. Methods The aboveground carbon density of 31 forest inventory plots located within the ALS survey region were used to develop estimation models relating carbon density to ALS information. Power-law models using rasters of top-of-the-canopy height were compared with models using tree-level information extracted from the ALS dataset. A forest carbon map with spatial resolution of 25 m was generated from ALS maps of forest height and the estimation models. The map was used to evaluate the influences of wind on forests. Results Power-law models were slightly less accurate than tree-centric models (RMSE 35% vs 32%) but were selected for map generation for computational efficiency. The carbon map comprised 4.5 million natural forest pixels within which canopy height had been measured by ALS, providing an unprecedented dataset with which to examine drivers of carbon density. Forests facing in the direction of westerly storms stored less carbon, as hypothesised. They had much greater above-ground carbon density for a given height than any of 14 tropical forests previously analysed by the same approach, and had exceptionally high basal areas for their height. We speculate that strong winds have kept forests short without impeding basal area growth. Conclusion Simple estimation models based on top-of-the canopy height are almost as accurate as state-of-the-art tree-centric approaches, which require more computing power. High-resolution carbon maps produced by ALS provide powerful datasets for evaluating the environmental drivers of forest structure, such as wind.


2018 ◽  
Vol 15 (12) ◽  
pp. 3811-3830 ◽  
Author(s):  
Tommaso Jucker ◽  
Gregory P. Asner ◽  
Michele Dalponte ◽  
Philip G. Brodrick ◽  
Christopher D. Philipson ◽  
...  

Abstract. Borneo contains some of the world's most biodiverse and carbon-dense tropical forest, but this 750 000 km2 island has lost 62 % of its old-growth forests within the last 40 years. Efforts to protect and restore the remaining forests of Borneo hinge on recognizing the ecosystem services they provide, including their ability to store and sequester carbon. Airborne laser scanning (ALS) is a remote sensing technology that allows forest structural properties to be captured in great detail across vast geographic areas. In recent years ALS has been integrated into statewide assessments of forest carbon in Neotropical and African regions, but not yet in Asia. For this to happen new regional models need to be developed for estimating carbon stocks from ALS in tropical Asia, as the forests of this region are structurally and compositionally distinct from those found elsewhere in the tropics. By combining ALS imagery with data from 173 permanent forest plots spanning the lowland rainforests of Sabah on the island of Borneo, we develop a simple yet general model for estimating forest carbon stocks using ALS-derived canopy height and canopy cover as input metrics. An advanced feature of this new model is the propagation of uncertainty in both ALS- and ground-based data, allowing uncertainty in hectare-scale estimates of carbon stocks to be quantified robustly. We show that the model effectively captures variation in aboveground carbon stocks across extreme disturbance gradients spanning tall dipterocarp forests and heavily logged regions and clearly outperforms existing ALS-based models calibrated for the tropics, as well as currently available satellite-derived products. Our model provides a simple, generalized and effective approach for mapping forest carbon stocks in Borneo and underpins ongoing efforts to safeguard and facilitate the restoration of its unique tropical forests.


2019 ◽  
Vol 11 (8) ◽  
pp. 928 ◽  
Author(s):  
Tom Swinfield ◽  
Jeremy A. Lindsell ◽  
Jonathan V. Williams ◽  
Rhett D. Harrison ◽  
Agustiono ◽  
...  

Unmanned aerial vehicles are increasingly used to monitor forests. Three-dimensional models of tropical rainforest canopies can be constructed from overlapping photos using Structure from Motion (SfM), but it is often impossible to map the ground elevation directly from such data because canopy gaps are rare in rainforests. Without knowledge of the terrain elevation, it is, thus, difficult to accurately measure the canopy height or forest properties, including the recovery stage and aboveground carbon density. Working in an Indonesian ecosystem restoration landscape, we assessed how well SfM derived the estimates of the canopy height and aboveground carbon density compared with those from an airborne laser scanning (also known as LiDAR) benchmark. SfM systematically underestimated the canopy height with a mean bias of approximately 5 m. The linear models suggested that the bias increased quadratically with the top-of-canopy height for short, even-aged, stands but linearly for tall, structurally complex canopies (>10 m). The predictions based on the simple linear model were closely correlated to the field-measured heights when the approach was applied to an independent survey in a different location ( R 2 = 67% and RMSE = 1.85 m), but a negative bias of 0.89 m remained, suggesting the need to refine the model parameters with additional training data. Models that included the metrics of canopy complexity were less biased but with a reduced R 2 . The inclusion of ground control points (GCPs) was found to be important in accurately registering SfM measurements in space, which is essential if the survey requirement is to produce small-scale restoration interventions or to track changes through time. However, at the scale of several hectares, the top-of-canopy height and above-ground carbon density estimates from SfM and LiDAR were very similar even without GCPs. The ability to produce accurate top-of-canopy height and carbon stock measurements from SfM is game changing for forest managers and restoration practitioners, providing the means to make rapid, low-cost surveys over hundreds of hectares without the need for LiDAR.


2018 ◽  
Author(s):  
Tommaso Jucker ◽  
Gregory P. Asner ◽  
Michele Dalponte ◽  
Philip Brodrick ◽  
Christopher D. Philipson ◽  
...  

Abstract. Borneo contains some of the world’s most biodiverse and carbon dense tropical forest, but this 750 000-km2 island has lost 62 % of its old-growth forests within the last 40 years. Efforts to protect and restore the remaining forests of Borneo hinge on recognising the ecosystem services they provide, including their ability to store and sequester carbon. Airborne Laser Scanning (ALS) is a remote sensing technology that allows forest structural properties to be captured in great detail across vast geographic areas. In recent years ALS has been integrated into state-wide assessment of forest carbon in Neotropical and African regions, but not yet in Asia. For this to happen, new regional models, need to be developed for estimating carbon stocks from ALS in tropical Asia, as the forests of this region are structurally and compositionally distinct from those found elsewhere in the tropics. By combining ALS imagery with data from 173 permanent forest plots spanning the lowland rain forests of Sabah, on the island of Borneo, we develop a simple-yet-general model for estimating forest carbon stocks using ALS-derived canopy height and canopy cover as input metrics. An advanced feature of this new model is the propagation of uncertainty in both ALS- and ground-based data, allowing uncertainty in hectare-scale estimates of carbon stocks to be quantified robustly. We show that the model effectively captures variation in aboveground carbons stocks across extreme disturbance gradients spanning tall dipterocarp forests and heavily logged regions, and clearly outperforms existing ALS-based models calibrated for the tropics, as well as currently available satellite-derived products. Our model provides a simple, generalised and effective approach for mapping forest carbon stocks in Borneo, and underpins ongoing efforts to safeguard and facilitate the restoration of its unique tropical forests.


2016 ◽  
Vol 10 (1) ◽  
pp. 016019
Author(s):  
Zhengyang Hou ◽  
Qing Xu ◽  
Chao Zhang ◽  
Matti Maltamo ◽  
Timo Tokola

Sign in / Sign up

Export Citation Format

Share Document