scholarly journals Comments to "Relevance of aboveground litter for soil organic matter formation – a soil profile perspective"

2020 ◽  
Author(s):  
Anonymous
2020 ◽  
Author(s):  
Patrick Liebmann ◽  
Patrick Wordell-Dietrich ◽  
Karsten Kalbitz ◽  
Robert Mikutta ◽  
Fabian Kalks ◽  
...  

2021 ◽  
pp. 108302
Author(s):  
Gerrit Angst ◽  
Jan Pokorný ◽  
Carsten W. Mueller ◽  
Isabel Prater ◽  
Sebastian Preusser ◽  
...  

2021 ◽  
Vol 770 ◽  
pp. 145307
Author(s):  
Mohammad Bahadori ◽  
Chengrong Chen ◽  
Stephen Lewis ◽  
Sue Boyd ◽  
Mehran Rezaei Rashti ◽  
...  

2017 ◽  
Vol 345 ◽  
pp. 113-124 ◽  
Author(s):  
Alexander Komarov ◽  
Oleg Chertov ◽  
Sergey Bykhovets ◽  
Cindy Shaw ◽  
Marina Nadporozhskaya ◽  
...  

2021 ◽  
pp. 108447
Author(s):  
Luís F.J. Almeida ◽  
Ivan F. Souza ◽  
Luís C.C. Hurtarte ◽  
Pedro Paulo Teixeira ◽  
Thiago M. Inagaki ◽  
...  

2019 ◽  
Vol 16 (6) ◽  
pp. 1225-1248 ◽  
Author(s):  
Andy D. Robertson ◽  
Keith Paustian ◽  
Stephen Ogle ◽  
Matthew D. Wallenstein ◽  
Emanuele Lugato ◽  
...  

Abstract. Soil organic matter (SOM) dynamics in ecosystem-scale biogeochemical models have traditionally been simulated as immeasurable fluxes between conceptually defined pools. This greatly limits how empirical data can be used to improve model performance and reduce the uncertainty associated with their predictions of carbon (C) cycling. Recent advances in our understanding of the biogeochemical processes that govern SOM formation and persistence demand a new mathematical model with a structure built around key mechanisms and biogeochemically relevant pools. Here, we present one approach that aims to address this need. Our new model (MEMS v1.0) is developed from the Microbial Efficiency-Matrix Stabilization framework, which emphasizes the importance of linking the chemistry of organic matter inputs with efficiency of microbial processing and ultimately with the soil mineral matrix, when studying SOM formation and stabilization. Building on this framework, MEMS v1.0 is also capable of simulating the concept of C saturation and represents decomposition processes and mechanisms of physico-chemical stabilization to define SOM formation into four primary fractions. After describing the model in detail, we optimize four key parameters identified through a variance-based sensitivity analysis. Optimization employed soil fractionation data from 154 sites with diverse environmental conditions, directly equating mineral-associated organic matter and particulate organic matter fractions with corresponding model pools. Finally, model performance was evaluated using total topsoil (0–20 cm) C data from 8192 forest and grassland sites across Europe. Despite the relative simplicity of the model, it was able to accurately capture general trends in soil C stocks across extensive gradients of temperature, precipitation, annual C inputs and soil texture. The novel approach that MEMS v1.0 takes to simulate SOM dynamics has the potential to improve our forecasts of how soils respond to management and environmental perturbation. Ensuring these forecasts are accurate is key to effectively informing policy that can address the sustainability of ecosystem services and help mitigate climate change.


Radiocarbon ◽  
1980 ◽  
Vol 22 (3) ◽  
pp. 892-896 ◽  
Author(s):  
J D Stout ◽  
K M Goh

Δ14C and δ13C values for organic matter in forest and grassland soils, in the presence or absence of earthworms, indicate that it should be possible to quantify the effects of earthworms on soil organic matter by this means. Without earthworms, both in forest and grassland soils, plant debris tends to accumulate on the surface of the mineral soil and little organic matter is incorporated into or is translocated down the soil profile. Where earthworms are present, there is much more marked incorporation of fresh plant debris in the mineral soil. This is shown especially by the pulse of ‘bomb’ carbon and also by the δ13C values.


Soil Research ◽  
2008 ◽  
Vol 46 (8) ◽  
pp. 645 ◽  
Author(s):  
Hao Chen ◽  
Yuhua Bai ◽  
Qingjie Wang ◽  
Fu Chen ◽  
Hongwen Li ◽  
...  

Challenges for dryland farming on the Loess Plateau of China are continuous nutrient loss, low soil organic matter and crop yield, and soil degradation. Controlled traffic, combined with zero or minimum tillage and residue cover, has been proposed to improve soil structure and crop yield. From 1998 to 2006, we conducted a field experiment comparing soil organic matter and wheat productivity between controlled traffic and conventional tillage farming systems. The field experiment was conducted using 2 controlled traffic treatments (zero tillage with residue cover and no compaction, shallow tillage with residue cover and no compaction) and a conventional tillage treatment. Results showed that controlled traffic treatments significantly increased soil organic matter and microbial biomass in the 0–0.30 m soil profile. Controlled traffic with zero tillage significantly increased total N in the 0–0.05 m soil profile. The mean yield over 8 years of controlled traffic treatments was >10% greater than that of conventional tillage. Controlled traffic farming appears to be a solution to the cropping problems faced on the Loess Plateau of China.


Sign in / Sign up

Export Citation Format

Share Document