cluster roots
Recently Published Documents


TOTAL DOCUMENTS

106
(FIVE YEARS 26)

H-INDEX

30
(FIVE YEARS 2)

2022 ◽  
Author(s):  
Jun Wasaki ◽  
Tadashi Okamura ◽  
Taiki Yamauchi ◽  
Hayato Maruyama ◽  
Shinji Uchida ◽  
...  

Abstract Aims The family Proteaceae is one of the dominant families in nutrient-impoverished habitats in the Southern hemisphere, and less common in the Northern hemisphere. Helicia cochinchinensis Lour. is the only Proteaceae species in Japan. This study aimed to unveil the ecophysiological properties of H. cochinchinensis grown on Miyajima Island, Hiroshima, Japan.Methods Phosphorus (P) status and dynamics of soils in H. cochinchinensis habitats were measured. Plant P and nitrogen (N) concentrations of leaves were measured after digestion. Roots and rhizosheath soil were collected to assess root morphology and root exudates.Results Available P (Olsen-P) in soils in habitats of H. cochinchinensis was 0.46–3.7 mg P kg-1 soil. Citrate was the major carboxylate in root exudates and its concentration increased during cluster-root formation. Acid phosphatase activity was greater at the surface of cluster roots that on the surface of other roots and bulk soil, especially for mature cluster roots. Sparingly soluble organic P concentrations decreased in the rhizosheath soil of mature cluster roots. The P concentrations of H. cochinchinensis leaves were relatively low; 0.34–0.69 mg P g-1 DW and 0.15–0.29 mg P g-1 DW in mature and senesced leaves, respectively. The P demand of H. cochinchinensis was less than that of nearby trees, showing greater P-remobilization efficiency.Conclusions Phosphorus mobilization from unavailable P by cluster roots supported P uptake by H. cochinchinensis, and P remobilization from senescing leaves contributed to sustain growth under P-deficient conditions.


2022 ◽  
Vol 12 ◽  
Author(s):  
Miguel A. Quiñones ◽  
M. Mercedes Lucas ◽  
José J. Pueyo

Almost half of the world’s agricultural soils are acidic, and most of them present significant levels of aluminum (Al) contamination, with Al3+ as the prevailing phytotoxic species. Lupin is a protein crop that is considered as an optimal alternative to soybean cultivation in cold climates. Lupins establish symbiosis with certain soil bacteria, collectively known as rhizobia, which are capable of fixing atmospheric nitrogen. Moreover, some lupin species, especially white lupin, form cluster roots, bottlebrush-like structures specialized in the mobilization and uptake of nutrients in poor soils. Cluster roots are also induced by Al toxicity. They exude phenolic compounds and organic acids that chelate Al to form non-phytotoxic complexes in the rhizosphere and inside the root cells, where Al complexes are accumulated in the vacuole. Lupins flourish in highly acidic soils where most crops, including other legumes, are unable to grow. Some lupin response mechanisms to Al toxicity are common to other plants, but lupin presents specific tolerance mechanisms, partly as a result of the formation of cluster roots. Al-induced lupin organic acid secretion differs from P-induced secretion, and organic acid transporters functions differ from those in other legumes. Additionally, symbiotic rhizobia can contribute to Al detoxification. After revising the existing knowledge on lupin distinct Al tolerance mechanisms, we conclude that further research is required to elucidate the specific organic acid secretion and Al accumulation mechanisms in this unique legume, but definitely, white lupin arises as a choice crop for cultivation in Al-rich acidic soils in temperate climate regions.


2021 ◽  
Author(s):  
Sarah Bereswill ◽  
Nicole Rudolph-Mohr ◽  
Sascha E Oswald

Abstract PurposeRhizosphere respiration strongly affects CO2 concentration within vegetated soils and resulting fluxes to the atmosphere. Respiration in the rhizosphere exhibits high spatiotemporal variability that may be linked to root type, but also to small-scale variation of soil water content altering gas transport dynamics in the soil. We address spatiotemporal dynamics of CO2 and O2 concentration in the rhizosphere via non-invasive in-situ imaging.MethodsOptodes sensitive to CO2 and O2 were applied to non-invasively measure in-situ rhizosphere CO2 and O2 concentration of white lupine (Lupinus albus) grown in slab-shaped glass rhizotrons. We monitored CO2 concentration over the course of 16 days at constant water content and also performed a drying-rewetting experiment to explore sensitivity of CO2 and O2 concentration to soil moisture changes. ResultsHotspots of respiration formed around cluster roots and CO2 concentration locally increased to > 20 % pCO2 (CO2 partial pressure). After rewetting the soil, cluster roots consumed available O2 significantly faster compared to non-cluster lateral roots. In wet soil, CO2 accumulation zones extended up to 9.5 mm from the root surface compared to 0.3-1 mm in dry soil.ConclusionResults from this imaging experiment indicate that respiratory activity differs substantially within the root system of a plant individual and that cluster roots are hotspots of respiration. As rhizosphere CO2 and O2 concentration was strongly sensitive to soil water content and its variation, we recommend monitoring the soil water content prior and during the measurement of rhizosphere respiration.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Camille Bihanic ◽  
Eddy Petit ◽  
Roseline Perrot ◽  
Lucie Cases ◽  
Armelle Garcia ◽  
...  

AbstractNew Caledonian endemic Mn-hyperaccumulator Grevillea meisneri is useful species for the preparation of ecocatalysts, which contain Mn–Ca oxides that are very difficult to synthesize under laboratory conditions. Mechanisms leading to their formation in the ecocatalysts are unknown. Comparing tissue-level microdistribution of these two elements could provide clues. We studied tissue-level distribution of Mn, Ca, and other elements in different tissues of G. meisneri using micro-X-Ray Fluorescence-spectroscopy (μXRF), and the speciation of Mn by micro-X-ray Absorption Near Edge Structure (µXANES), comparing nursery-grown plants transplanted into the site, and similar-sized plants growing naturally on the site. Mirroring patterns in other Grevillea species, Mn concentrations were highest in leaf epidermal tissues, in cortex and vascular tissues of stems and primary roots, and in phloem and pericycle–endodermis of parent cluster roots. Strong positive Mn/Ca correlations were observed in every tissue of G. meisneri where Mn was the most concentrated. Mn foliar speciation confirmed what was already reported for G. exul, with strong evidence for carboxylate counter-ions. The co-localization of Ca and Mn in the same tissues of G. meisneri might in some way facilitate the formation of mixed Ca–Mn oxides upon preparation of Eco-CaMnOx ecocatalysts from this plant. Grevillea meisneri has been successfully used in rehabilitation of degraded mining sites in New Caledonia, and in supplying biomass for production of ecocatalysts. We showed that transplanted nursery-grown seedlings accumulate as much Mn as do spontaneous plants, and sequester Mn in the same tissues, demonstrating the feasibility of large-scale transplantation programs for generating Mn-rich biomass.


Horticulturae ◽  
2021 ◽  
Vol 7 (9) ◽  
pp. 302
Author(s):  
Miguel A. Quiñones ◽  
Susana Fajardo ◽  
Mercedes Fernández-Pascual ◽  
M. Mercedes Lucas ◽  
José J. Pueyo

Two white lupin (Lupinus albus L.) cultivars were tested for their capacity to accumulate mercury when grown in Hg-contaminated soils. Plants inoculated with a Bradyrhizobium canariense Hg-tolerant strain or non-inoculated were grown in two highly Hg-contaminated soils. All plants were nodulated and presented a large number of cluster roots. They accumulated up to 600 μg Hg g−1 DW in nodules, 1400 μg Hg g−1 DW in roots and 2550 μg Hg g−1 DW in cluster roots. Soil, and not cultivar or inoculation, was accountable for statistically significant differences. No Hg translocation to leaves or seeds took place. Inoculated L. albus cv. G1 plants were grown hydroponically under cluster root-promoting conditions in the presence of Hg. They accumulated about 500 μg Hg g−1 DW in nodules and roots and up to 1300 μg Hg g−1 DW in cluster roots. No translocation to the aerial parts occurred. Bioaccumulation factors were also extremely high, especially in soils and particularly in cluster roots. To our knowledge, Hg accumulation in cluster roots has not been reported to date. Our results suggest that inoculated white lupin might represent a powerful phytoremediation tool through rhizosequestration of Hg in contaminated soils. Potential uptake and immobilization mechanisms are discussed.


2021 ◽  
Vol 12 ◽  
Author(s):  
Tamara Le Thanh ◽  
Bárbara Hufnagel ◽  
Alexandre Soriano ◽  
Fanchon Divol ◽  
Laurent Brottier ◽  
...  

White lupin produces cluster roots in response to phosphorus deficiency. Along the cluster root, numerous short rootlets successively appear, creating a spatial and temporal gradient of developmental stages that constitutes a powerful biological model to study the dynamics of the structural and functional evolution of these organs. The present study proposes a fine histochemical, transcriptomic and functional analysis of the rootlet development from its emergence to its final length. Between these two stages, the tissue structures of the rootlets were observed, the course of transcript expressions for the genes differentially expressed was monitored and some physiological events linked to Pi nutrition were followed. A switch between (i) a growing phase, in which a normal apical meristem is present and (ii) a specialized phase for nutrition, in which the rootlet is completely differentiated, was highlighted. In the final stage of its determinate growth, the rootlet is an organ with a very active metabolism, especially for the solubilization and absorption of several nutrients. This work discusses how the transition between a growing to a determinate state in response to nutritional stresses is found in other species and underlines the fundamental dilemma of roots between soil exploration and soil exploitation.


2021 ◽  
Author(s):  
Yaping Zhou ◽  
Philipp Olt ◽  
Benjamin Neuhäuser ◽  
Narges Moradtalab ◽  
William Bautista ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Camille Bihanic ◽  
Eddy Petit ◽  
Roseline Perrot ◽  
Lucie Cases ◽  
Armelle Garcia ◽  
...  

Abstract • Grevillea meisneri, an endemic New Caledonian Mn-hyperaccumulator, is used in rehabilitation of degraded mining sites on the island. Large-scale programs require transplanting nursery-grown seedlings, but effects of the nursery environment on Mn tolerance of transplants and their capacity to hyper-accumulate Mn are unknown, slowing rehabilitation efforts.• We studied tissue-level distribution of Mn and other elements in different tissues of G. meisneri using micro-X-Ray Fluorescence spectroscopy (μXRF), comparing nursery-grown plants transplanted into the site and sampled seven years later, and similar-sized plants that had grown spontaneously in the site. • Mirroring patterns in other Mn-hyperaccumulators, Mn was preferentially accumulated in leaves but was also present in roots. Concentrations were highest in leaf epidermal tissues, in cortex and vascular tissues of stems and primary roots, and in phloem and pericycle-endodermis of parent cluster roots. Although abundant in soil, Ni was absent from all tissues of G. meisneri. Ca was always co-localised with Mn. Preferential uptake of Mn vs Ni in roots implies as-yet-uncharacterized specific Mn-transporters, while Ca and Mn co-localisation suggests shared transport pathways. • No differences were observed in concentration and distribution of Mn in transplanted and spontaneously-growing plants. Nursery-grown transplants should be highly suitable for large-scale, high-throughput rehabilitation programs.


Sign in / Sign up

Export Citation Format

Share Document