scholarly journals Sensitivity of wetland methane emissions to model assumptions: application and model testing against site observations

2012 ◽  
Vol 9 (7) ◽  
pp. 2793-2819 ◽  
Author(s):  
L. Meng ◽  
P. G. M. Hess ◽  
N. M. Mahowald ◽  
J. B. Yavitt ◽  
W. J. Riley ◽  
...  

Abstract. Methane emissions from natural wetlands and rice paddies constitute a large proportion of atmospheric methane, but the magnitude and year-to-year variation of these methane sources are still unpredictable. Here we describe and evaluate the integration of a methane biogeochemical model (CLM4Me; Riley et al., 2011) into the Community Land Model 4.0 (CLM4CN) in order to better explain spatial and temporal variations in methane emissions. We test new functions for soil pH and redox potential that impact microbial methane production in soils. We also constrain aerenchyma in plants in always-inundated areas in order to better represent wetland vegetation. Satellite inundated fraction is explicitly prescribed in the model, because there are large differences between simulated fractional inundation and satellite observations, and thus we do not use CLM4-simulated hydrology to predict inundated areas. A rice paddy module is also incorporated into the model, where the fraction of land used for rice production is explicitly prescribed. The model is evaluated at the site level with vegetation cover and water table prescribed from measurements. Explicit site level evaluations of simulated methane emissions are quite different than evaluating the grid-cell averaged emissions against available measurements. Using a baseline set of parameter values, our model-estimated average global wetland emissions for the period 1993–2004 were 256 Tg CH4 yr−1 (including the soil sink) and rice paddy emissions in the year 2000 were 42 Tg CH4 yr−1. Tropical wetlands contributed 201 Tg CH4 yr−1, or 78% of the global wetland flux. Northern latitude (>50 N) systems contributed 12 Tg CH4 yr−1. However, sensitivity studies show a large range (150–346 Tg CH4 yr−1) in predicted global methane emissions (excluding emissions from rice paddies). The large range is sensitive to (1) the amount of methane transported through aerenchyma, (2) soil pH (±100 Tg CH4 yr−1), and (3) redox inhibition (±45 Tg CH4 yr−1). Results are sensitive to biases in the CLMCN and to errors in the satellite inundation fraction. In particular, the high latitude methane emission estimate may be biased low due to both underestimates in the high-latitude inundated area captured by satellites and unrealistically low high-latitude productivity and soil carbon predicted by CLM4.

2011 ◽  
Vol 8 (3) ◽  
pp. 6095-6160 ◽  
Author(s):  
L. Meng ◽  
P. G. M. Hess ◽  
N. M. Mahowald ◽  
J. B. Yavitt ◽  
W. J. Riley ◽  
...  

Abstract. Methane emissions from natural wetlands and rice paddies constitute a large proportion of atmospheric methane, but the magnitude and year-to-year variation of these methane sources is still unpredictable. Here we describe and evaluate the integration of a methane biogeochemical model (CLM4Me; Riley et al., 2011) into the Community Land Model 4.0 (CLM4CN) in order to better explain spatial and temporal variations in methane emissions. We test new functions for soil pH and redox potential that impact microbial methane production in soils. We also constrain aerenchyma in plants in always-inundated areas in order to better represent wetland vegetation. Satellite inundated fraction is explicitly prescribed in the model because there are large differences between simulated fractional inundation and satellite observations. A rice paddy module is also incorporated into the model, where the fraction of land used for rice production is explicitly prescribed. The model is evaluated at the site level with vegetation cover and water table prescribed from measurements. Explicit site level evaluations of simulated methane emissions are quite different than evaluating the grid cell averaged emissions against available measurements. Using a baseline set of parameter values, our model-estimated average global wetland emissions for the period 1993–2004 were 256 Tg CH4 yr−1, and rice paddy emissions in the year 2000 were 42 Tg CH4 yr−1. Tropical wetlands contributed 201 Tg CH4 yr−1, or 78 % of the global wetland flux. Northern latitude (>50 N) systems contributed 12 Tg CH4 yr−1. We expect this latter number may be an underestimate due to the low high-latitude inundated area captured by satellites and unrealistically low high-latitude productivity and soil carbon predicted by CLM4. Sensitivity analysis showed a large range (150–346 Tg CH4 yr−1) in predicted global methane emissions. The large range was sensitive to: (1) the amount of methane transported through aerenchyma, (2) soil pH (± 100 Tg CH4 yr−1), and (3) redox inhibition (± 45 Tg CH4 yr−1).


2015 ◽  
Vol 12 (3) ◽  
pp. 2161-2212 ◽  
Author(s):  
L. Meng ◽  
R. Paudel ◽  
P. G. M. Hess ◽  
N. M. Mahowald

Abstract. Understanding the temporal and spatial variation of wetland methane emissions is essential to the estimation of the global methane budget. We examine the seasonal and inter-annual variability in wetland methane emissions simulated in the Community Land Model (CLM4Me'). Methane emissions from both the Carbon-Nitrogen (CN, i.e. CLM4.0) and the Biogeochemistry (BGC, i.e. CLM4.5) versions of the CLM are evaluated. We further conduct simulations of the transport and removal of methane using the Community Atmosphere Model (CAM-chem) model using CLM4Me' methane emissions from both CN and BGC along with other methane sources and compare model simulated atmospheric methane concentration with observations. In addition, we simulate the atmospheric concentrations based on the TransCom wetland and rice paddy emissions from a different terrestrial ecosystem model VISIT. Our analysis suggests CN wetland methane emissions are higher in tropics and lower in high latitudes than BGC. In CN, methane emissions decrease from 1993 to 2004 while this trend does not appear in the BGC version. In the CN versions, methane emission variations follow satellite-derived inundation wetlands closely. However, they are dissimilar in BGC due to its different carbon cycle. CAM-chem model simulations with CLM4Me' methane emissions suggest that both prescribed anthropogenic and predicted wetlands methane emissions contribute substantially to seasonal and inter-annual variability in atmospheric methane concentration. It also suggests that different spatial patterns of wetland emissions can have significant impacts on N–S atmospheric CH4 concentration gradients and growth rates. This study suggests that large uncertainties still exist in terms of spatial patterns and magnitude of global wetland methane budgets, and that substantial uncertainty comes from the carbon model underlying the methane flux modules.


2021 ◽  
Author(s):  
Claire C. Treat ◽  
Miriam C. Jones ◽  
Laura S. Brosius ◽  
Guido Grosse ◽  
Katey Walter Anthony ◽  
...  

<p>The sources of atmospheric methane (CH<sub>4</sub>) during the Holocene remain widely debated, including the role of high latitude wetland and peatland expansion and fen-to-bog transitions. We reconstructed CH<sub>4 </sub>emissions from northern peatlands from 13,000 before present (BP) to present using an empirical model based on observations of peat initiation (>3600 <sup>14</sup>C dates), peatland type (>250 peat cores), and contemporary CH<sub>4</sub> emissions in order to explore the effects of changes in wetland type and peatland expansion on CH<sub>4</sub> emissions over the end of the late glacial and the Holocene. We find that fen area increased steadily before 8000 BP as fens formed in major wetland complexes. After 8000 BP, new fen formation continued but widespread peatland succession (to bogs) and permafrost aggradation occurred. Reconstructed CH<sub>4</sub> emissions from peatlands increased rapidly between 10,600 BP and 6900 BP due to fen formation and expansion. Emissions stabilized after 5000 BP at 42 ± 25 Tg CH<sub>4</sub> y<sup>-1</sup> as high-emitting fens transitioned to lower-emitting bogs and permafrost peatlands. Widespread permafrost formation in northern peatlands after 1000 BP led to drier and colder soils which decreased CH<sub>4 </sub>emissions by 20% to 34 ± 21 Tg y<sup>-1</sup> by the present day.</p><p> </p>


2016 ◽  
Vol 13 (11) ◽  
pp. 3397-3426 ◽  
Author(s):  
Stuart Riddick ◽  
Daniel Ward ◽  
Peter Hess ◽  
Natalie Mahowald ◽  
Raia Massad ◽  
...  

Abstract. Nitrogen applied to the surface of the land for agricultural purposes represents a significant source of reactive nitrogen (Nr) that can be emitted as a gaseous Nr species, be denitrified to atmospheric nitrogen (N2), run off during rain events or form plant-useable nitrogen in the soil. To investigate the magnitude, temporal variability and spatial heterogeneity of nitrogen pathways on a global scale from sources of animal manure and synthetic fertilizer, we developed a mechanistic parameterization of these pathways within a global terrestrial land model, the Community Land Model (CLM). In this first model version the parameterization emphasizes an explicit climate-dependent approach while using highly simplified representations of agricultural practices, including manure management and fertilizer application. The climate-dependent approach explicitly simulates the relationship between meteorological variables and biogeochemical processes to calculate the volatilization of ammonia (NH3), nitrification and runoff of Nr following manure or synthetic fertilizer application. For the year 2000, approximately 125 Tg N yr−1 is applied as manure and 62 Tg N yr−1 is applied as synthetic fertilizer. We estimate the resulting global NH3 emissions are 21 Tg N yr−1 from manure (17 % of manure production) and 12 Tg N yr−1 from fertilizer (19 % of fertilizer application); reactive nitrogen runoff during rain events is calculated as 11 Tg N yr−1 from manure and 5 Tg N yr−1 from fertilizer. The remaining nitrogen from manure (93 Tg N yr−1) and synthetic fertilizer (45 Tg N yr−1) is captured by the canopy or transferred to the soil nitrogen pools. The parameterization was implemented in the CLM from 1850 to 2000 using a transient simulation which predicted that, even though absolute values of all nitrogen pathways are increasing with increased manure and synthetic fertilizer application, partitioning of nitrogen to NH3 emissions from manure is increasing on a percentage basis, from 14 % of nitrogen applied in 1850 (3 Tg NH3 yr−1) to 17 % of nitrogen applied in 2000 (21 Tg NH3 yr−1). Under current manure and synthetic fertilizer application rates we find a global sensitivity of an additional 1 Tg NH3 (approximately 3 % of manure and fertilizer) emitted per year per °C of warming. While the model confirms earlier estimates of nitrogen fluxes made in a range of studies, its key purpose is to provide a theoretical framework that can be employed within a biogeochemical model, that can explicitly respond to climate and that can evolve and improve with further observation.


2018 ◽  
Vol 20 (4) ◽  
pp. 673-685 ◽  
Author(s):  
Tatiana A. Vishnivetskaya ◽  
Haiyan Hu ◽  
Joy D. Van Nostrand ◽  
Ann M. Wymore ◽  
Xiaohang Xu ◽  
...  

Sulfate-reducing bacteria and methanogens are the primary Hg-methylators in Chinese rice paddies.


2008 ◽  
Vol 4 (6) ◽  
pp. 681-684 ◽  
Author(s):  
Guangmin Cao ◽  
Xingliang Xu ◽  
Ruijun Long ◽  
Qilan Wang ◽  
Changting Wang ◽  
...  

For the first time to our knowledge, we report here methane emissions by plant communities in alpine ecosystems in the Qinghai–Tibet Plateau. This has been achieved through long-term field observations from June 2003 to July 2006 using a closed chamber technique. Strong methane emission at the rate of 26.2±1.2 and 7.8±1.1 μg CH 4 m −2  h −1 was observed for a grass community in a Kobresia humilis meadow and a Potentilla fruticosa meadow, respectively. A shrub community in the Potentilla meadow consumed atmospheric methane at the rate of 5.8±1.3 μg CH 4 m −2  h −1 on a regional basis; plants from alpine meadows contribute at least 0.13 Tg CH 4 yr −1 in the Tibetan Plateau. This finding has important implications with regard to the regional methane budget and species-level difference should be considered when assessing methane emissions by plants.


Sign in / Sign up

Export Citation Format

Share Document