methane budget
Recently Published Documents


TOTAL DOCUMENTS

136
(FIVE YEARS 50)

H-INDEX

33
(FIVE YEARS 7)

Author(s):  
James L. France ◽  
Rebecca E. Fisher ◽  
David Lowry ◽  
Grant Allen ◽  
Marcos F. Andrade ◽  
...  

The atmospheric methane (CH 4 ) burden is rising sharply, but the causes are still not well understood. One factor of uncertainty is the importance of tropical CH 4 emissions into the global mix. Isotopic signatures of major sources remain poorly constrained, despite their usefulness in constraining the global methane budget. Here, a collection of new δ 13 C CH 4 signatures is presented for a range of tropical wetlands and rice fields determined from air samples collected during campaigns from 2016 to 2020. Long-term monitoring of δ 13 C CH 4 in ambient air has been conducted at the Chacaltaya observatory, Bolivia and Southern Botswana. Both long-term records are dominated by biogenic CH 4 sources, with isotopic signatures expected from wetland sources. From the longer-term Bolivian record, a seasonal isotopic shift is observed corresponding to wetland extent suggesting that there is input of relatively isotopically light CH 4 to the atmosphere during periods of reduced wetland extent. This new data expands the geographical extent and range of measurements of tropical wetland and rice δ 13 C CH 4 sources and hints at significant seasonal variation in tropical wetland δ 13 C CH 4 signatures which may be important to capture in future global and regional models. This article is part of a discussion meeting issue ‘Rising methane: is warming feeding warming? (part 2)’.


Author(s):  
◽  
Euan G. Nisbet ◽  
Grant Allen ◽  
Rebecca E. Fisher ◽  
James L. France ◽  
...  

We report methane isotopologue data from aircraft and ground measurements in Africa and South America. Aircraft campaigns sampled strong methane fluxes over tropical papyrus wetlands in the Nile, Congo and Zambezi basins, herbaceous wetlands in Bolivian southern Amazonia, and over fires in African woodland, cropland and savannah grassland. Measured methane δ 13 C CH 4 isotopic signatures were in the range −55 to −49‰ for emissions from equatorial Nile wetlands and agricultural areas, but widely −60 ± 1‰ from Upper Congo and Zambezi wetlands. Very similar δ 13 C CH 4 signatures were measured over the Amazonian wetlands of NE Bolivia (around −59‰) and the overall δ 13 C CH 4 signature from outer tropical wetlands in the southern Upper Congo and Upper Amazon drainage plotted together was −59 ± 2‰. These results were more negative than expected. For African cattle, δ 13 C CH 4 values were around −60 to −50‰. Isotopic ratios in methane emitted by tropical fires depended on the C3 : C4 ratio of the biomass fuel. In smoke from tropical C3 dry forest fires in Senegal, δ 13 C CH 4 values were around −28‰. By contrast, African C4 tropical grass fire δ 13 C CH 4 values were −16 to −12‰. Methane from urban landfills in Zambia and Zimbabwe, which have frequent waste fires, had δ 13 C CH 4 around −37 to −36‰. These new isotopic values help improve isotopic constraints on global methane budget models because atmospheric δ 13 C CH 4 values predicted by global atmospheric models are highly sensitive to the δ 13 C CH 4 isotopic signatures applied to tropical wetland emissions. Field and aircraft campaigns also observed widespread regional smoke pollution over Africa, in both the wet and dry seasons, and large urban pollution plumes. The work highlights the need to understand tropical greenhouse gas emissions in order to meet the goals of the UNFCCC Paris Agreement, and to help reduce air pollution over wide regions of Africa. This article is part of a discussion meeting issue 'Rising methane: is warming feeding warming? (part 2)'.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Luana S. Basso ◽  
Luciano Marani ◽  
Luciana V. Gatti ◽  
John B. Miller ◽  
Manuel Gloor ◽  
...  

AbstractAtmospheric methane concentrations were nearly constant between 1999 and 2006, but have been rising since by an average of ~8 ppb per year. Increases in wetland emissions, the largest natural global methane source, may be partly responsible for this rise. The scarcity of in situ atmospheric methane observations in tropical regions may be one source of large disparities between top-down and bottom-up estimates. Here we present 590 lower-troposphere vertical profiles of methane concentration from four sites across Amazonia between 2010 and 2018. We find that Amazonia emits 46.2 ± 10.3 Tg of methane per year (~8% of global emissions) with no temporal trend. Based on carbon monoxide, 17% of the sources are from biomass burning with the remainder (83%) attributable mainly to wetlands. Northwest-central Amazon emissions are nearly aseasonal, consistent with weak precipitation seasonality, while southern emissions are strongly seasonal linked to soil water seasonality. We also find a distinct east-west contrast with large fluxes in the northeast, the cause of which is currently unclear.


2021 ◽  
Author(s):  
Elodie Salmon ◽  
Fabrice Jégou ◽  
Bertrand Guenet ◽  
Line Jourdain ◽  
Chunjing Qiu ◽  
...  

Abstract. In the global methane budget, the largest natural source is attributed to wetlands that encompass all ecosystems composed of waterlogged or inundated ground, capable of methane production. Among them, northern peatlands that store large amounts of soil organic carbon have been functioning, since the end of the last glaciation period, as long-term sources of methane (CH4) and are one of the most significant methane sources among wetlands. To reduce global methane budget uncertainties, it is of significance to understand processes driving methane production and fluxes in northern peatlands. A methane model that features methane production and transport by plants, ebullition process and diffusion in soil, oxidation to CO2 and CH4 fluxes to the atmosphere has been embedded in the ORCHIDEE-PEAT land surface model which includes an explicit representation of northern peatlands. This model, ORCHIDEE-PCH4 was calibrated and evaluated on 14 peatland sites distributed on both Eurasian and American continents in the northern boreal and temperate regions. Data assimilation approaches were employed to optimized parameters at each site and at all sites simultaneously. Results show that, in ORCHIDEE-PCH4, methanogenesis is sensitive to temperature and substrate availability over the top 75 cm of soil depth. Methane emissions estimated using single site optimization (SSO) of model parameters are underestimated by 9 g CH4 m−2 year−1 on average (i.e. 50 % higher than the site average of yearly methane emissions). While using the multi-sites optimization (MSO), methane emissions are overestimated by 5 g CH4 m−2 year−1 on average across all investigated sites (i.e. 37 % lower than the site average of yearly methane emissions).


Author(s):  
Paul I. Palmer ◽  
Liang Feng ◽  
Mark F. Lunt ◽  
Robert J. Parker ◽  
Hartmut Bösch ◽  
...  

Surface observations have recorded large and incompletely understood changes to atmospheric methane (CH 4 ) this century. However, their ability to reveal the responsible surface sources and sinks is limited by their geographical distribution, which is biased towards the northern midlatitudes. Data from Earth-orbiting satellites designed specifically to measure atmospheric CH 4 have been available since 2009 with the launch of the Japanese Greenhouse gases Observing SATellite (GOSAT). We assess the added value of GOSAT to data collected by the US National Oceanic and Atmospheric Administration (NOAA), which have been the lynchpin for knowledge about atmospheric CH 4 since the 1980s. To achieve that we use the GEOS-Chem atmospheric chemistry transport model and an inverse method to infer a posteriori flux estimates from the NOAA and GOSAT data using common a priori emission inventories. We find the main benefit of GOSAT data is from its additional coverage over the tropics where we report large increases since the 2014/2016 El Niño, driven by biomass burning, biogenic emissions and energy production. We use data from the European TROPOspheric Monitoring Instrument to show how better spatial coverage and resolution measurements allow us to quantify previously unattainable diffuse sources of CH 4 , thereby opening up a new research frontier. This article is part of a discussion meeting issue ‘Rising methane: is warming feeding warming? (part 1)’.


Author(s):  
Xin Lan ◽  
Euan G. Nisbet ◽  
Edward J. Dlugokencky ◽  
Sylvia E. Michel

Atmospheric CH 4 is arguably the most interesting of the anthropogenically influenced, long-lived greenhouse gases. It has a diverse suite of sources, each presenting its own challenges in quantifying emissions, and while its main sink, atmospheric oxidation initiated by reaction with hydroxyl radical (OH), is well-known, determining the magnitude and trend in this and other smaller sinks remains challenging. Here, we provide an overview of the state of knowledge of the dynamic atmospheric CH 4 budget of sources and sinks determined from measurements of CH 4 and δ 13 C CH4 in air samples collected predominantly at background air sampling sites. While nearly four decades of direct measurements provide a strong foundation of understanding, large uncertainties in some aspects of the global CH 4 budget still remain. More complete understanding of the global CH 4 budget requires significantly more observations, not just of CH 4 itself, but other parameters to better constrain key, but still uncertain, processes like wetlands and sinks. This article is part of a discussion meeting issue 'Rising methane: is warming feeding warming? (part 1)'.


2021 ◽  
Author(s):  
Ann R. Stavert ◽  
Marielle Saunois ◽  
Josep G. Canadell ◽  
Benjamin Poulter ◽  
Robert B. Jackson ◽  
...  

2021 ◽  
Vol 3 (4) ◽  
pp. 405-415
Author(s):  
Binhao Wang ◽  
Xiafei Zheng ◽  
Hangjun Zhang ◽  
Xiaoli Yu ◽  
Yingli Lian ◽  
...  

AbstractSubmerged plants in wetlands play important roles as ecosystem engineers to improve self-purification and promote elemental cycling. However, their effects on the functional capacity of microbial communities in wetland sediments remain poorly understood. Here, we provide detailed metagenomic insights into the biogeochemical potential of microbial communities in wetland sediments with and without submerged plants (i.e., Vallisneria natans). A large number of functional genes involved in carbon (C), nitrogen (N) and sulfur (S) cycling were detected in the wetland sediments. However, most functional genes showed higher abundance in sediments with submerged plants than in those without plants. Based on the comparison of annotated functional genes in the N and S cycling databases (i.e., NCycDB and SCycDB), we found that genes involved in nitrogen fixation (e.g., nifD/H/K/W), assimilatory nitrate reduction (e.g., nasA and nirA), denitrification (e.g., nirK/S and nosZ), assimilatory sulfate reduction (e.g., cysD/H/J/N/Q and sir), and sulfur oxidation (e.g., glpE, soeA, sqr and sseA) were significantly higher (corrected p < 0.05) in vegetated vs. unvegetated sediments. This could be mainly driven by environmental factors including total phosphorus, total nitrogen, and C:N ratio. The binning of metagenomes further revealed that some archaeal taxa could have the potential of methane metabolism including hydrogenotrophic, acetoclastic, and methylotrophic methanogenesis, which are crucial to the wetland methane budget and carbon cycling. This study opens a new avenue for linking submerged plants with microbial functions, and has further implications for understanding global carbon, nitrogen and sulfur cycling in wetland ecosystems.


Sign in / Sign up

Export Citation Format

Share Document