scholarly journals Exploring the "overflow tap" theory: linking forest soil CO<sub>2</sub> fluxes and individual mycorrhizosphere components to photosynthesis

2012 ◽  
Vol 9 (1) ◽  
pp. 79-95 ◽  
Author(s):  
A. Heinemeyer ◽  
M. Wilkinson ◽  
R. Vargas ◽  
J.-A. Subke ◽  
E. Casella ◽  
...  

Abstract. Quantifying soil organic carbon stocks (SOC) and their dynamics accurately is crucial for better predictions of climate change feedbacks within the atmosphere-vegetation-soil system. However, the components, environmental responses and controls of the soil CO2 efflux (Rs) are still unclear and limited by field data availability. The objectives of this study were (1) to quantify the contribution of the various Rs components, specifically its mycorrhizal component, (2) to determine their temporal variability, and (3) to establish their environmental responses and dependence on gross primary productivity (GPP). In a temperate deciduous oak forest in south east England hourly soil and ecosystem CO2 fluxes over four years were measured using automated soil chambers and eddy covariance techniques. Mesh-bag and steel collar soil chamber treatments prevented root or both root and mycorrhizal hyphal in-growth, respectively, to allow separation of heterotrophic (Rh) and autotrophic (Ra) soil CO2 fluxes and the Ra components, roots (Rr) and mycorrhizal hyphae (Rm). Annual cumulative Rs values were very similar between years (740 ± 43 g C m−2 yr−1) with an average flux of 2.0 ± 0.3 μmol CO2 m−2 s−1, but Rs components varied. On average, annual Rr, Rm and Rh fluxes contributed 38, 18 and 44%, respectively, showing a large Ra contribution (56%) with a considerable Rm component varying seasonally. Soil temperature largely explained the daily variation of Rs (R2 = 0.81), mostly because of strong responses by Rh (R2 = 0.65) and less so for Rr (R2 = 0.41) and Rm (R2 = 0.18). Time series analysis revealed strong daily periodicities for Rs and Rr, whilst Rm was dominated by seasonal (~150 days), and Rh by annual periodicities. Wavelet coherence analysis revealed that Rr and Rm were related to short-term (daily) GPP changes, but for Rm there was a strong relationship with GPP over much longer (weekly to monthly) periods and notably during periods of low Rr. The need to include individual Rs components in C flux models is discussed, in particular, the need to represent the linkage between GPP and Ra components, in addition to temperature responses for each component. The potential consequences of these findings for understanding the limitations for long-term forest C sequestration are highlighted, as GPP via root-derived C including Rm seems to function as a C "overflow tap", with implications on the turnover of SOC.

2011 ◽  
Vol 8 (2) ◽  
pp. 3155-3201 ◽  
Author(s):  
A. Heinemeyer ◽  
M. Wilkinson ◽  
R. Vargas ◽  
J.-A. Subke ◽  
E. Casella ◽  
...  

Abstract. Quantifying soil organic carbon stocks and their dynamics accurately is crucial for better predictions of climate change feedbacks within the atmosphere-vegetation-soil system. However, the composition and environmental responses of the soil CO2 efflux (Rs) are still debated and limited by field data. The objective of this study was to quantify the contribution of the various Rs components and to determine their temporal variability, environmental responses and dependence on gross primary productivity (GPP) using time series analysis. In a deciduous oak forest in SE England hourly replicated Rs fluxes over 4 years were obtained using automated soil CO2 flux chambers and ecosystem CO2 exchange using eddy covariance methodology. Mesh-bag and steel collar treatments prevented root or both roots and mycorrhizal hyphal in-growth, respectively, to allow separation of heterotrophic (Rh) and autotrophic (Ra) soil CO2 fluxes and the Ra components, roots (Rr) and mycorrhizal hyphae (Rm). Annual cumulative Rs values were very similar between years (740 ± 43 g C m−2 yr−1) with an average flux of 2.0 ± 0.3 μmol CO2 m−2 s−1, but Rs components varied. On average, annual Rr, Rm and Rh fluxes contributed 39, 18 and 43%, respectively, showing a large Ra contribution (57%) comprising considerable seasonal Rm contributions. Soil temperature largely explained the daily variation of Rs (R2 = 0.81), mostly because of strong responses by Rh (R2 = 0.65) and less so for Rr (R2 = 0.41) and Rm (R2 = 0.18). However, Ra components showed strong apparent temperature responses around budburst and leaf fall but none during summer. Time series analysis revealed strong daily periodicities for Rs, whereas Rr was dominated by daily, Rm by seasonal (~150 days), and Rh by annual periodicities. Wavelet coherence analysis revealed that Rr and Rm were related to short-term (daily) GPP changes, but for R


Soil Systems ◽  
2018 ◽  
Vol 2 (3) ◽  
pp. 47 ◽  
Author(s):  
Rodrigo Vargas ◽  
Enrique Sánchez-Cañete P. ◽  
Penélope Serrano-Ortiz ◽  
Jorge Curiel Yuste ◽  
Francisco Domingo ◽  
...  

The metabolic activity of water-limited ecosystems is strongly linked to the timing and magnitude of precipitation pulses that can trigger disproportionately high (i.e., hot-moments) ecosystem CO2 fluxes. We analyzed over 2-years of continuous measurements of soil CO2 efflux (Fs) under vegetation (Fsveg) and at bare soil (Fsbare) in a water-limited grassland. The continuous wavelet transform was used to: (a) describe the temporal variability of Fs; (b) test the performance of empirical models ranging in complexity; and (c) identify hot-moments of Fs. We used partial wavelet coherence (PWC) analysis to test the temporal correlation between Fs with temperature and soil moisture. The PWC analysis provided evidence that soil moisture overshadows the influence of soil temperature for Fs in this water limited ecosystem. Precipitation pulses triggered hot-moments that increased Fsveg (up to 9000%) and Fsbare (up to 17,000%) with respect to pre-pulse rates. Highly parameterized empirical models (using support vector machine (SVM) or an 8-day moving window) are good approaches for representing the daily temporal variability of Fs, but SVM is a promising approach to represent high temporal variability of Fs (i.e., hourly estimates). Our results have implications for the representation of hot-moments of ecosystem CO2 fluxes in these globally distributed ecosystems.


2018 ◽  
Vol 15 (1) ◽  
pp. 115-136 ◽  
Author(s):  
Jinnan Gong ◽  
Ben Wang ◽  
Xin Jia ◽  
Wei Feng ◽  
Tianshan Zha ◽  
...  

Abstract. We used process-based modelling to investigate the roles of carbon-flux (C-flux) components and plant–interspace heterogeneities in regulating soil CO2 exchanges (FS) in a dryland ecosystem with sparse vegetation. To simulate the diurnal and seasonal dynamics of FS, the modelling considered simultaneously the CO2 production, transport and surface exchanges (e.g. biocrust photosynthesis, respiration and photodegradation). The model was parameterized and validated with multivariate data measured during the years 2013–2014 in a semiarid shrubland ecosystem in Yanchi, northwestern China. The model simulation showed that soil rewetting could enhance CO2 dissolution and delay the emission of CO2 produced from rooting zone. In addition, an ineligible fraction of respired CO2 might be removed from soil volumes under respiration chambers by lateral water flows and root uptakes. During rewetting, the lichen-crusted soil could shift temporally from net CO2 source to sink due to the activated photosynthesis of biocrust but the restricted CO2 emissions from subsoil. The presence of plant cover could decrease the root-zone CO2 production and biocrust C sequestration but increase the temperature sensitivities of these fluxes. On the other hand, the sensitivities of root-zone emissions to water content were lower under canopy, which may be due to the advection of water flows from the interspace to canopy. To conclude, the complexity and plant–interspace heterogeneities of soil C processes should be carefully considered to extrapolate findings from chamber to ecosystem scales and to predict the ecosystem responses to climate change and extreme climatic events. Our model can serve as a useful tool to simulate the soil CO2 efflux dynamics in dryland ecosystems.


2008 ◽  
Vol 5 (3) ◽  
pp. 1969-2001 ◽  
Author(s):  
B. Wilske ◽  
J. Burgheimer ◽  
A. Karnieli ◽  
E. Zaady ◽  
M. O. Andreae ◽  
...  

Abstract. Biological soil crusts (BSC) contribute significantly to the soil surface cover in many dryland ecosystems. A mixed type of BSC, which consists of cyanobacteria, mosses and cyanolichens, constitutes more than 60% of ground cover in the semiarid grass-shrub steppe at Sayeret Shaked in the northern Negev Desert, Israel. This study aimed at parameterizing the carbon sink capacity of well-developed BSC in undisturbed steppe systems. Mobile enclosures on permanent soil borne collars were used to investigate BSC-related CO2 fluxes in situ and with natural moisture supply during 10 two-day field campaigns within seven months from fall 2001 to summer 2002. Highest BSC-related CO2 deposition between −11.31 and −17.56 mmol m−2 per 15 h was found with BSC activated from rain and dew during the peak of the winter rain season. Net CO2 deposition by BSC was calculated to compensate 120%, −26%, and less than 3% of the concurrent soil CO2 efflux from November–January, February–May and November–May, respectively. Thus, BSC effectively compensated soil CO2 effluxes when CO2 uptake by vascular vegetation was probably at its low point. Nighttime respiratory emission reduced daily BSC-related CO2 deposition within the period November–January by 11–123% and on average by 27%. The analysis of CO2 fluxes and water inputs from the various sources showed that the bulk of BSC-related CO2 deposition occurs during periods with frequent rain events and subsequent condensation from water accumulated in the upper soil layers. Significant BSC activity on days without detectable atmospheric water supply emphasized the importance of high soil moisture contents as additional water source for soil-dwelling BSC, whereas activity upon dew formation at low soil water contents was not of major importance for BSC-related CO2 deposition. However, dew may still be important in attaining a pre-activated status during the transition from a long "summer" anabiosis towards the first winter rain.


2008 ◽  
Vol 5 (5) ◽  
pp. 1411-1423 ◽  
Author(s):  
B. Wilske ◽  
J. Burgheimer ◽  
A. Karnieli ◽  
E. Zaady ◽  
M. O. Andreae ◽  
...  

Abstract. Biological soil crusts (BSC) contribute significantly to the soil surface cover in many dryland ecosystems. A mixed type of BSC, which consists of cyanobacteria, mosses and cyanolichens, constitutes more than 60% of ground cover in the semiarid grass-shrub steppe at Sayeret Shaked in the northern Negev Desert, Israel. This study aimed at parameterizing the carbon sink capacity of well-developed BSC in undisturbed steppe systems. Mobile enclosures on permanent soil borne collars were used to investigate BSC-related CO2 fluxes in situ and with natural moisture supply during 10 two-day field campaigns within seven months from fall 2001 to summer 2002. Highest BSC-related CO2 deposition between –11.31 and –17.56 mmol m−2 per 15 h was found with BSC activated from rain and dew during the peak of the winter rain season. Net CO2 deposition by BSC was calculated to compensate 120%, –26%, and less than 3% of the concurrent soil CO2 efflux from November–January, February–May and November–May, respectively. Thus, BSC effectively compensated soil CO2 effluxes when CO2 uptake by vascular vegetation was probably at its low point. Nighttime respiratory emission reduced daily BSC-related CO2 deposition within the period November–January by 11–123% and on average by 27%. The analysis of CO2 fluxes and water inputs from the various sources showed that the bulk of BSC-related CO2 deposition occurs during periods with frequent rain events and subsequent condensation from water accumulated in the upper soil layers. Significant BSC activity on days without detectable atmospheric water supply emphasized the importance of high soil moisture contents as additional water source for soil-dwelling BSC, whereas activity upon dew formation at low soil water contents was not of major importance for BSC-related CO2 deposition. However, dew may still be important in attaining a pre-activated status during the transition from a long "summer" anabiosis towards the first winter rain.


Sign in / Sign up

Export Citation Format

Share Document