scholarly journals Exploring local adaptation and the ocean acidification seascape – studies in the California Current Large Marine Ecosystem

2013 ◽  
Vol 10 (7) ◽  
pp. 11825-11856 ◽  
Author(s):  
G. E. Hofmann ◽  
T. G. Evans ◽  
M. W. Kelly ◽  
J. L. Padilla-Gamiño ◽  
C. A. Blanchette ◽  
...  

Abstract. The California Current Large Marine Ecosystem (CCLME), a temperate marine region dominated by episodic upwelling, is predicted to experience rapid environmental change in the future due to ocean acidification. Aragonite saturation state within the California Current System is predicted to decrease in the future, with near-permanent undersaturation conditions expected by the year 2050. Thus, the CCLME is a critical region to study due to the rapid rate of environmental change that resident organisms will experience and because of the economic and societal value of this coastal region. Recent efforts by a research consortium – the Ocean Margin Ecosystems Group for Acidification Studies (OMEGAS) – has begun to characterize a portion of the CCLME; both describing the mosaic of pH in coastal waters and examining the responses of key calcification-dependent benthic marine organisms to natural variation in pH and to changes in carbonate chemistry that are expected in the coming decades. In this review, we present the OMEGAS strategy of co-locating sensors and oceanographic observations with biological studies on benthic marine invertebrates, specifically measurements of functional traits such as calcification-related processes and genetic variation in populations that are locally adapted to conditions in a particular region of the coast. Highlighted in this contribution are (1) the OMEGAS sensor network that spans the west coast of the US from central Oregon to southern California, (2) initial findings of the carbonate chemistry amongst the OMEGAS study sites, (3) an overview of the biological data that describes the acclimatization and the adaptation capacity of key benthic marine invertebrates within the CCLME.

2014 ◽  
Vol 11 (4) ◽  
pp. 1053-1064 ◽  
Author(s):  
G. E. Hofmann ◽  
T. G. Evans ◽  
M. W. Kelly ◽  
J. L. Padilla-Gamiño ◽  
C. A. Blanchette ◽  
...  

Abstract. The California Current Large Marine Ecosystem (CCLME), a temperate marine region dominated by episodic upwelling, is predicted to experience rapid environmental change in the future due to ocean acidification. The aragonite saturation state within the California Current System is predicted to decrease in the future with near-permanent undersaturation conditions expected by the year 2050. Thus, the CCLME is a critical region to study due to the rapid rate of environmental change that resident organisms will experience and because of the economic and societal value of this coastal region. Recent efforts by a research consortium – the Ocean Margin Ecosystems Group for Acidification Studies (OMEGAS) – has begun to characterize a portion of the CCLME; both describing the spatial mosaic of pH in coastal waters and examining the responses of key calcification-dependent benthic marine organisms to natural variation in pH and to changes in carbonate chemistry that are expected in the coming decades. In this review, we present the OMEGAS strategy of co-locating sensors and oceanographic observations with biological studies on benthic marine invertebrates, specifically measurements of functional traits such as calcification-related processes and genetic variation in populations that are locally adapted to conditions in a particular region of the coast. Highlighted in this contribution are (1) the OMEGAS sensor network that spans the west coast of the US from central Oregon to southern California, (2) initial findings of the carbonate chemistry amongst the OMEGAS study sites, and (3) an overview of the biological data that describes the acclimatization and the adaptation capacity of key benthic marine invertebrates within the CCLME.


2015 ◽  
Vol 12 (8) ◽  
pp. 5907-5940
Author(s):  
T. P. Sasse ◽  
B. I. McNeil ◽  
R. J. Matear ◽  
A. Lenton

Abstract. Ocean acidification is a predictable consequence of rising atmospheric carbon dioxide (CO2), and is highly likely to impact the entire marine ecosystem – from plankton at the base to fish at the top. Factors which are expected to be impacted include reproductive health, organism growth and species composition and distribution. Predicting when critical threshold values will be reached is crucial for projecting the future health of marine ecosystems and for marine resources planning and management. The impacts of ocean acidification will be first felt at the seasonal scale, however our understanding how seasonal variability will influence rates of future ocean acidification remains poorly constrained due to current model and data limitations. To address this issue, we first quantified the seasonal cycle of aragonite saturation state utilizing new data-based estimates of global ocean surface dissolved inorganic carbon and alkalinity. This seasonality was then combined with earth system model projections under different emissions scenarios (RCPs 2.6, 4.5 and 8.5) to provide new insights into future aragonite under-saturation onset. Under a high emissions scenario (RCP 8.5), our results suggest accounting for seasonality will bring forward the initial onset of month-long under-saturation by 17 years compared to annual-mean estimates, with differences extending up to 35 ± 17 years in the North Pacific due to strong regional seasonality. Our results also show large-scale under-saturation once atmospheric CO2 reaches 486 ppm in the North Pacific and 511 ppm in the Southern Ocean independent of emission scenario. Our results suggest that accounting for seasonality is critical to projecting the future impacts of ocean acidification on the marine environment.


Elem Sci Anth ◽  
2017 ◽  
Vol 5 ◽  
Author(s):  
Terrie Klinger ◽  
Elizabeth A. Chornesky ◽  
Elizabeth A. Whiteman ◽  
Francis Chan ◽  
John L. Largier ◽  
...  

Ocean acidification is intensifying and hypoxia is projected to expand in the California Current large marine ecosystem as a result of processes associated with the global emission of CO2. Observed changes in the California Current outpace those in many other areas of the ocean, underscoring the pressing need to adopt management approaches that can accommodate uncertainty and the complicated dynamics forced by accelerating change. We argue that changes occurring in the California Current large marine ecosystem provide opportunities and incentives to adopt an integrated, systems-level approach to resource management to preserve existing ecosystem services and forestall abrupt change. Practical options already exist to maximize the benefits of management actions and ameliorate impending change in the California Current, for instance, adding ocean acidification and hypoxia to design criteria for marine protected areas, including consideration of ocean acidification and hypoxia in fisheries management decisions, and fully enforcing existing laws and regulations that govern water quality and land use and development.


2015 ◽  
Vol 12 (20) ◽  
pp. 6017-6031 ◽  
Author(s):  
T. P. Sasse ◽  
B. I. McNeil ◽  
R. J. Matear ◽  
A. Lenton

Abstract. Ocean acidification is a predictable consequence of rising atmospheric carbon dioxide (CO2), and is highly likely to impact the entire marine ecosystem – from plankton at the base of the food chain to fish at the top. Factors which are expected to be impacted include reproductive health, organism growth and species composition and distribution. Predicting when critical threshold values will be reached is crucial for projecting the future health of marine ecosystems and for marine resources planning and management. The impacts of ocean acidification will be first felt at the seasonal scale, however our understanding how seasonal variability will influence rates of future ocean acidification remains poorly constrained due to current model and data limitations. To address this issue, we first quantified the seasonal cycle of aragonite saturation state utilizing new data-based estimates of global ocean-surface dissolved inorganic carbon and alkalinity. This seasonality was then combined with earth system model projections under different emissions scenarios (representative concentration pathways; RCPs 2.6, 4.5 and 8.5) to provide new insights into future aragonite undersaturation onset. Under a high emissions scenario (RCP 8.5), our results suggest accounting for seasonality will bring forward the initial onset of month-long undersaturation by 17 ± 10 years compared to annual-mean estimates, with differences extending up to 35 ± 16 years in the North Pacific due to strong regional seasonality. This earlier onset will result in large-scale undersaturation once atmospheric CO2 reaches 496 ppm in the North Pacific and 511 ppm in the Southern Ocean, independent of emission scenario. This work suggests accounting for seasonality is critical to projecting the future impacts of ocean acidification on the marine environment.


2021 ◽  
Vol 7 (2) ◽  
pp. eaba9958
Author(s):  
Maxence Guillermic ◽  
Louise P. Cameron ◽  
Ilian De Corte ◽  
Sambuddha Misra ◽  
Jelle Bijma ◽  
...  

The combination of thermal stress and ocean acidification (OA) can more negatively affect coral calcification than an individual stressors, but the mechanism behind this interaction is unknown. We used two independent methods (microelectrode and boron geochemistry) to measure calcifying fluid pH (pHcf) and carbonate chemistry of the corals Pocillopora damicornis and Stylophora pistillata grown under various temperature and pCO2 conditions. Although these approaches demonstrate that they record pHcf over different time scales, they reveal that both species can cope with OA under optimal temperatures (28°C) by elevating pHcf and aragonite saturation state (Ωcf) in support of calcification. At 31°C, neither species elevated these parameters as they did at 28°C and, likewise, could not maintain substantially positive calcification rates under any pH treatment. These results reveal a previously uncharacterized influence of temperature on coral pHcf regulation—the apparent mechanism behind the negative interaction between thermal stress and OA on coral calcification.


2015 ◽  
Vol 72 (7) ◽  
pp. 2128-2138 ◽  
Author(s):  
Hannes Baumann ◽  
R. J. D. Wells ◽  
Jay R. Rooker ◽  
Saijin Zhang ◽  
Zofia Baumann ◽  
...  

Abstract Juvenile Pacific bluefin tuna (PBT, Thunnus orientalis) are known to migrate from western Pacific spawning grounds to their eastern Pacific nursery and feeding grounds in the California Current Large Marine Ecosystem (CCLME), but the timing, durations, and fraction of the population that makes these migrations need to be better understood for improved management. To complement recent work focused on stable isotope and radiotracer approaches (“tracer toolbox”; Madigan et al., 2014) we explored the suitability of combining longitudinal analyses of otolith microstructure and trace elemental composition in age ∼1–2 PBT (n = 24, 66–76 cm curved fork length) for inferring the arrival of individuals in the CCLME. Element:Ca ratios in transverse otolith sections (9–12 rows, triplicate ablations from primordium to edge, ø50 μm) were quantified for eight elements: Li, Mg, Mn, Co, Cu, Zn, Sr, and Ba, which was followed by microstructure analysis to provide age estimates corresponding to each ablation spot. Age estimates from otoliths ranged from 328 to 498 d post-hatch. The combined elemental signatures of four elements (Ba, Mg, Co, Cu) showed a significant increase at the otolith edge in approximately half of the individuals (30–60 d before catch). Given the different oceanographic properties of oligotrophic open Pacific vs. high nutrient, upwelling CCLME waters, this signal is consistent with the entry of the fish into the CCLME, which was estimated to occur primarily in July after a transoceanic migration of ∼1.5–2.0 months. Our approach comprises a useful addition to the available tracer toolbox and can provide additional and complementary understanding of trans-Pacific migration patterns in PBT.


PLoS ONE ◽  
2019 ◽  
Vol 14 (7) ◽  
pp. e0217711 ◽  
Author(s):  
Lisa G. Crozier ◽  
Michelle M. McClure ◽  
Tim Beechie ◽  
Steven J. Bograd ◽  
David A. Boughton ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document