stock identification
Recently Published Documents


TOTAL DOCUMENTS

250
(FIVE YEARS 27)

H-INDEX

34
(FIVE YEARS 2)

Fishes ◽  
2021 ◽  
Vol 6 (4) ◽  
pp. 71
Author(s):  
Juan F. Espínola-Novelo ◽  
Marcelo E. Oliva

The spatial and temporal variability of parasite communities have received little attention when used as biological tags for identifying fish stocks. This study evaluated the potential spatial and temporal variability of the parasite communities affecting three marine fish species collected between 1993 and 2017. To avoid the potential effect of host age in parasite communities, individuals of similar ages were selected: 1123 Engraulis ringens (12–24 months old), 1904 Trachurus murphyi (24–36 months old), and 630 Merluccius gayi (36–48 months old). Most taxa show differences in the prevalence at the spatial and temporal scales, but the prevalence of some larval endoparasites remains constant at the temporal scale. At the spatial scale, an analysis of similarity (ANOSIM) showed differences in the parasite communities of three species; a canonical analysis of principal coordinates (CAP) showed low values of correct allocations (CA; ≈50%) and values of allocation due to chance (AdC) were lower than the CA. At the temporal scale, an ANOSIM showed differences between the three species. A CAP showed low values of CA (≈50–60%) and the AdC was always lower than CA. Samples at the spatial scale were well allocated to their localities or nearby localities, suggesting a spatial stability. Samples from different years were not well discriminated, suggesting temporal variability. Therefore, in studies regarding parasites as a tool for stock identification, temporal variability must be taken into account.


2021 ◽  
Author(s):  
Shigehiko Urawa ◽  
Terry Beacham ◽  
Ben Sutherland ◽  
Shunpei Sato

Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 987
Author(s):  
Kélig Mahé ◽  
Kirsteen MacKenzie ◽  
Djamila Ider ◽  
Andrea Massaro ◽  
Oussama Hamed ◽  
...  

The otolith, found in both inner ears of bony fish, has mainly been used to estimate fish age. Another application that has been developing significantly in recent years, however, is the use of otolith shape as a tool for stock identification. Often, studies have directly used the shape asymmetry between the right and left otoliths. We tested the magnitude of directional asymmetry between the sagittal otoliths (left vs. right) of 2991 individuals according to their catch locations, and we selected species to evaluate whether directional asymmetry may itself be a tool to evaluate stock boundaries. Elliptical Fourier descriptors were used to describe the otolith shape. We used a flatfish, the common sole (Solea solea, n = 2431), from the eastern English Channel and the southern North Sea as well as a roundfish, the bogue (Boops boops, n = 560), from the Mediterranean Sea. Both species showed significant levels of directional asymmetry between the testing locations. The bogue otoliths showed significant asymmetry for only 5 out of 11 locations, with substantial separation between two large areas: the Algerian coast and the western part of the Italian coast. The sole otoliths showed significant asymmetry in the shape analysis (3.84%–6.57%), suggesting a substantial separation between two large areas: the English and French parts of the English Channel and the southern North Sea. Consequently, directional bilateral asymmetry in otolith shape is a potential new method for stock identification.


2021 ◽  
Author(s):  
Christoph M. Deeg ◽  
Ben J. G. Sutherland ◽  
Tobi J. Ming ◽  
Colin Wallace ◽  
Kim Jonsen ◽  
...  

Genetic stock identification (GSI) by single nucleotide polymorphism (SNP) sequencing has become the gold standard for stock identification in Pacific salmon, which are found in mixed-stocks during the oceanic phase of their lifecycle. Sequencing platforms currently applied require large batch sizes and multi-day processing in specialized facilities to perform genotyping by the thousands. However, recent advances in third-generation single-molecule sequencing platforms, like the Oxford Nanopore minION, provide base calling on portable, pocket-sized sequencers and hold promise for the application of real-time, in-field stock identification on variable batch sizes. Here we report and evaluate utility and comparability of at-sea stock identification of coho salmon Oncorhynchus kisutch based on targeted SNP amplicon sequencing on the minION platform during the International Year of the Salmon Signature Expedition to the Gulf of Alaska in the winter of 2019. Long read sequencers are not optimized for short amplicons, therefore we concatenate amplicons to increase coverage and throughput. Nanopore sequencing at-sea yielded stock assignment for 50 of the 80 assessed individuals. Nanopore-based SNP calls agreed with Ion Torrent based genotypes in 83.25%, but assignment of individuals to stock of origin only agreed in 61.5% of individuals highlighting inherent challenges of Nanopore sequencing, such as resolution of homopolymer tracts and indels. However, poor representation of assayed coho salmon in the queried baseline dataset contributed to poor assignment confidence on both platforms. Future improvements will focus on lowering turnaround time, accuracy, throughput, and cost, as well as augmentation of the existing baselines, specifically in stocks from coastal northern BC and Alaska. If successfully implemented, Nanopore sequencing will provide an alternative method to the large-scale laboratory approach. Genotyping by amplicon sequencing in the hands of diverse stakeholders could inform management decisions over a broad expanse of the coast by allowing the analysis of small batches in remote areas in near real-time.


2021 ◽  
Vol 13 (2) ◽  
pp. 99-112
Author(s):  
Alexander J. Jensen ◽  
Carl B. Schreck ◽  
James T. Peterson

Author(s):  
Terry D. Beacham ◽  
Colin G. Wallace ◽  
Kim Jonsen ◽  
Ben J. G. Sutherland ◽  
Carrie Gummer ◽  
...  

Determination of population structure and stock identification is a general problem in fisheries assessment and management. Pacific salmon fishery management regimes are evolving to require higher resolution of stock composition on increasingly smaller reporting units. For Chinook salmon (Oncorhynchus tshawytscha), a stock identification baseline comprised of some 125,198 individuals from 369 populations ranging from Russia to California was employed for genetic stock identification (GSI). GSI analysis based upon variation at up to 547 single nucleotide polymorphisms (SNPs) was demonstrated to provide accurate estimates of stock composition for 68 Conservation Units (CUs) in British Columbia, 23 reporting groups in the United States, and one reporting group in Russia. In many instances, accurate population-specific estimates of stock composition within a CU were possible in fishery samples, as well as identifying individuals to some specific populations. A genetics-based assessment system provides an opportunity for conservation-based management of Canadian Chinook salmon.


Sign in / Sign up

Export Citation Format

Share Document