coral calcification
Recently Published Documents


TOTAL DOCUMENTS

109
(FIVE YEARS 22)

H-INDEX

27
(FIVE YEARS 3)

Water ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 38
Author(s):  
Chai Kee Ong ◽  
Jen Nie Lee ◽  
Jani Thuaibah Isa Tanzil

Skeletal records of massive Porites lutea corals sampled from reefs around Malaysia have previously shown average decadal declines in growth rates associated with sea warming. However, there was a variability in growth declines between sites that warrant the need for investigations into more site-specific variations. This study analyzed decade-long (December 2004–November 2014) annual growth records (annual linear extension rate, skeletal bulk density, calcification rate) reconstructed from five massive P. lutea colonies from Pulau Tinggi, Malaysia. Significant non-linear changes in inter-annual trends of linear extension and calcification rates were found, with notable decreases that corresponded to the 2010 El Niño thermal stress episode and a pan-tropical mass coral bleaching event. Coral linear extension and calcification were observed to return to pre-2010 rates by 2012, suggesting the post-stress recovery of P. lutea corals at the study site within 2 years. Although no long-term declines in linear extension and calcification rates were detected, a linear decrease in annual skeletal bulk density by ≈9.5% over the 10-year study period was found. This suggests that although coral calcification rates are retained, the skeletal integrity of P. lutea corals may be compromised with potential implications for the strength of the overall reef carbonate framework. The correlation of coral calcification rates with sea surface temperature also demonstrated site-specific thermal threshold at 29 °C, which is comparable to the regional thermal threshold previously found for the Thai-Malay Peninsula.


2021 ◽  
Vol 8 ◽  
Author(s):  
Xinqing Zheng ◽  
Chenying Wang ◽  
Huaxia Sheng ◽  
Gaofeng Niu ◽  
Xu Dong ◽  
...  

The supply of metabolites from symbionts to scleractinian corals is crucial to coral health. Members of the Symbiodiniaceae can enhance coral calcification by providing photosynthetically fixed carbon (PFC) and energy, whereas dinitrogen (N2)-fixing bacteria can provide additional nutrients such as diazotrophically-derived nitrogen (DDN) that sustain coral productivity especially when alternative external nitrogen sources are scarce. How these mutualistic associations benefit corals in the future acidifying ocean is not well understood. In this study, we investigated the possible effects of ocean acidification (OA; pHs 7.7 and 7.4 vs. 8.1) on calcification in the hermatypic coral Galaxea fascicularis with respect to PFC and DDN assimilation. Our measurements based on isotopic tracing showed no significant differences in the assimilation of PFC among different pH treatments, but the assimilation of DDN decreased significantly after 28 days of stress at pH 7.4. The decreased DDN assimilation suggests a nitrogenous nutrient deficiency in the coral holotiont, potentially leading to reduced coral calcification and resilience to bleaching and other stressful events. This contrasting impact of OA on carbon and N flux demonstrates the flexibility of G. fascicularis in coping with OA, apparently by sustaining a largely undamaged photosystem at the expense of N2 fixation machinery, which competes with coral calcification for energy from photosynthesis. These findings shed new light on the critically important but more vulnerable N cycling in hospite, and on the trade-off between coral hosts and symbionts in response to future climate change.


2021 ◽  
Vol 7 (2) ◽  
pp. eaba9958
Author(s):  
Maxence Guillermic ◽  
Louise P. Cameron ◽  
Ilian De Corte ◽  
Sambuddha Misra ◽  
Jelle Bijma ◽  
...  

The combination of thermal stress and ocean acidification (OA) can more negatively affect coral calcification than an individual stressors, but the mechanism behind this interaction is unknown. We used two independent methods (microelectrode and boron geochemistry) to measure calcifying fluid pH (pHcf) and carbonate chemistry of the corals Pocillopora damicornis and Stylophora pistillata grown under various temperature and pCO2 conditions. Although these approaches demonstrate that they record pHcf over different time scales, they reveal that both species can cope with OA under optimal temperatures (28°C) by elevating pHcf and aragonite saturation state (Ωcf) in support of calcification. At 31°C, neither species elevated these parameters as they did at 28°C and, likewise, could not maintain substantially positive calcification rates under any pH treatment. These results reveal a previously uncharacterized influence of temperature on coral pHcf regulation—the apparent mechanism behind the negative interaction between thermal stress and OA on coral calcification.


Author(s):  
Eric Tambutté ◽  
Philippe Ganot ◽  
Alexander A Venn ◽  
Sylvie Tambutté

AbstractCilia are evolutionarily conserved organelles that extend from the surface of cells and are found in diverse organisms from protozoans to multicellular organisms. Motile cilia play various biological functions by their beating motion, including mixing fluids and transporting food particles. Non-motile cilia act as sensors that signal cells about their microenvironment. In corals, cilia have been described in some of the cell layers but never in the calcifying epithelium, which is responsible for skeleton formation. In the present study, we used scanning electron microscopy and immunolabelling to investigate the cellular ciliature of the different tissue layers of the coral Stylophora pistillata, with a focus on the calcifying calicoblastic ectoderm. We show that the cilium of the calcifying cells is different from the cilium of the other cell layers. It is much shorter, and more importantly, its base is structurally distinct from the base observed in cilia of the other tissue layers. Based on these structural observations, we conclude that the cilium of the calcifying cells is a primary cilium. From what is known in other organisms, primary cilia are sensors that signal cells about their microenvironment. We discuss the implications of the presence of a primary cilium in the calcifying epithelium for our understanding of the cellular physiology driving coral calcification and its environmental sensitivity.


PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0241854
Author(s):  
Travis A. Courtney ◽  
Theodor Kindeberg ◽  
Andreas J. Andersson

The North Atlantic Oscillation (NAO) has been hypothesized to drive interannual variability in Bermudan coral extension rates and reef-scale calcification through the provisioning of nutritional pulses associated with negative NAO winters. However, the direct influence of the NAO on Bermudan coral calcification rates remains to be determined and may vary between species and reef sites owing to implicit differences in coral life history strategies and environmental gradients across the Bermuda reef platform. In this study, we investigated the connection between negative NAO winters and Bermudan Diploria labyrinthiformis, Pseudodiploria strigosa, and Orbicella franksi coral calcification rates across rim reef, lagoon, and nearshore reef sites. Linear mixed effects modeling detected an inverse correlation between D. labyrinthiformis calcification rates and the winter NAO index, with higher rates associated with increasingly negative NAO winters. Conversely, there were no detectable correlations between P. strigosa or O. franksi calcification rates and the winter NAO index suggesting that coral calcification responses associated with negative NAO winters could be species-specific. The correlation between coral calcification rates and winter NAO index was significantly more negative at the outer rim of the reef (Hog Reef) compared to a nearshore reef site (Whalebone Bay), possibly indicating differential influence of the NAO as a function of the distance from the reef edge. Furthermore, a negative calcification anomaly was observed in 100% of D. labyrinthiformis cores in association with the 1988 coral bleaching event with a subsequent positive calcification anomaly in 1989 indicating a post-bleaching recovery in calcification rates. These results highlight the importance of assessing variable interannual coral calcification responses between species and across inshore-offshore gradients to interannual atmospheric modes such as the NAO, thermal stress events, and potential interactions between ocean warming and availability of coral nutrition to improve projections for future coral calcification rates under climate change.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Celeste Kellock ◽  
Catherine Cole ◽  
Kirsty Penkman ◽  
David Evans ◽  
Roland Kröger ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Saori Ito ◽  
Tsuyoshi Watanabe ◽  
Megumi Yano ◽  
Takaaki K. Watanabe

2020 ◽  
Vol 204 ◽  
pp. 103154
Author(s):  
Thomas C. Brachert ◽  
Thierry Corrège ◽  
Markus Reuter ◽  
Claudia Wrozyna ◽  
Laurent Londeix ◽  
...  

2020 ◽  
Vol 525 (3) ◽  
pp. 576-580 ◽  
Author(s):  
Katie L. Barott ◽  
Alexander A. Venn ◽  
Angus B. Thies ◽  
Sylvie Tambutté ◽  
Martin Tresguerres

Sign in / Sign up

Export Citation Format

Share Document