scholarly journals The relative importance of phytoplankton aggregates and zooplankton fecal pellets to carbon export: insights from free-drifting sediment trap deployments in naturally iron-fertilised waters near the Kerguelen plateau

2014 ◽  
Vol 11 (9) ◽  
pp. 13623-13673 ◽  
Author(s):  
E. C. Laurenceau ◽  
T. W. Trull ◽  
D. M. Davies ◽  
S. G. Bray ◽  
J. Doran ◽  
...  

Abstract. The first KErguelen Ocean and Plateau compared Study (KEOPS1), conducted in the naturally iron-fertilised Kerguelen bloom, demonstrated that fecal material was the main pathway for exporting carbon to the deep ocean during summer (January–February~2005), suggesting a~limited role of direct export via phytodetrital aggregates. The KEOPS2 project re-investigated this issue during the spring bloom initiation (October–November 2011), when zooplankton communities may exert limited grazing pressure, and explored further the link between carbon flux, export efficiency and dominant sinking particles depending upon surface plankton community structure. Sinking particles were collected in polyacrylamide gel-filled and standard free-drifting sediment traps (PPS3/3), deployed at six stations between 100 and 400 m to examine flux composition, particle origin and their size distributions. Results revealed an important contribution of phytodetrital aggregates (49 ± 10% and 45 ± 22% of the total number and volume of particles respectively, all stations and depths averaged). This high contribution dropped when converted to carbon content (30 ± 16% of total carbon, all stations and depths averaged), cylindrical fecal pellets representing then the dominant fraction (56 ± 19%). At 100 and 200 m depth, iron and biomass enriched sites exhibited the highest carbon fluxes (maxima of 180 and 84 ± 27 mg C m−2 d−1; based on gel and PPS3/3 trap collection respectively), especially where large fecal pellets dominated over phytodetrital aggregates. Below these depths, carbon fluxes decreased (48 ± 21% decrease in average between 200 and 400 m), and mixed aggregates composed of phytodetritus and fecal matter dominated, suggesting an important role played by physical aggregation in deep carbon export. Export efficiencies determined from gels, PPS3/3 traps and 234Th disequilibria (200 m carbon flux/net primary productivity), were negatively correlated to net primary productivity with observed decreases from ~ 0.2 at low-iron sites to ~ 0.02 at high-iron sites. Varying phytoplankton communities and grazing pressure appear to explain this negative relationship. Our work emphasizes the need to consider detailed plankton community structure to accurately identify the controls on carbon export efficiency, which appear to include small spatio-temporal variations of ecosystem structure.

2015 ◽  
Vol 12 (4) ◽  
pp. 1007-1027 ◽  
Author(s):  
E. C. Laurenceau-Cornec ◽  
T. W. Trull ◽  
D. M. Davies ◽  
S. G. Bray ◽  
J. Doran ◽  
...  

Abstract. The first KErguelen Ocean and Plateau compared Study (KEOPS1), conducted in the naturally iron-fertilised Kerguelen bloom, demonstrated that fecal material was the main pathway for exporting carbon to the deep ocean during summer (January–February 2005), suggesting a limited role of direct export via phytodetrital aggregates. The KEOPS2 project reinvestigated this issue during the spring bloom initiation (October–November 2011), when zooplankton communities may exert limited grazing pressure, and further explored the link between carbon flux, export efficiency and dominant sinking particles depending upon surface plankton community structure. Sinking particles were collected in polyacrylamide gel-filled and standard free-drifting sediment traps (PPS3/3), deployed at six stations between 100 and 400 m, to examine flux composition, particle origin and their size distributions. Results revealed an important contribution of phytodetrital aggregates (49 ± 10 and 45 ± 22% of the total number and volume of particles respectively, all stations and depths averaged). This high contribution dropped when converted to carbon content (30 ± 16% of total carbon, all stations and depths averaged), with cylindrical fecal pellets then representing the dominant fraction (56 ± 19%). At 100 and 200 m depth, iron- and biomass-enriched sites exhibited the highest carbon fluxes (maxima of 180 and 84 ± 27 mg C m-2 d-1, based on gel and PPS3/3 trap collection respectively), especially where large fecal pellets dominated over phytodetrital aggregates. Below these depths, carbon fluxes decreased (48 ± 21% decrease on average between 200 and 400 m), and mixed aggregates composed of phytodetritus and fecal matter dominated, suggesting an important role played by physical aggregation in deep carbon export. Export efficiencies determined from gels, PPS3/3 traps and 234Th disequilibria (200 m carbon flux/net primary productivity) were negatively correlated to net primary productivity with observed decreases from ~ 0.2 at low-iron sites to ~ 0.02 at high-iron sites. Varying phytoplankton communities and grazing pressure appear to explain this negative relationship. Our work emphasises the need to consider detailed plankton communities to accurately identify the controls on carbon export efficiency, which appear to include small spatio-temporal variations in ecosystem structure.


2016 ◽  
Vol 113 (11) ◽  
pp. 2958-2963 ◽  
Author(s):  
Ben A. Ward ◽  
Michael J. Follows

Mixotrophic plankton, which combine the uptake of inorganic resources and the ingestion of living prey, are ubiquitous in marine ecosystems, but their integrated biogeochemical impacts remain unclear. We address this issue by removing the strict distinction between phytoplankton and zooplankton from a global model of the marine plankton food web. This simplification allows the emergence of a realistic trophic network with increased fidelity to empirical estimates of plankton community structure and elemental stoichiometry, relative to a system in which autotrophy and heterotrophy are mutually exclusive. Mixotrophy enhances the transfer of biomass to larger sizes classes further up the food chain, leading to an approximately threefold increase in global mean organism size and an ∼35% increase in sinking carbon flux.


2019 ◽  
Vol 33 (8) ◽  
pp. 971-994 ◽  
Author(s):  
L. T. Bach ◽  
P. Stange ◽  
J. Taucher ◽  
E. P. Achterberg ◽  
M. Algueró‐Muñiz ◽  
...  

2020 ◽  
Vol 37 ◽  
pp. 101320
Author(s):  
Prasun Goswami ◽  
Sanjoy Gupta ◽  
Apurba Kumar Das ◽  
Nambali Valsalan Vinithkumar ◽  
Gopal Dharani ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document