scholarly journals Phosphate availability and the ultimate control of new nitrogen input by nitrogen fixation in the tropical Pacific Ocean

2007 ◽  
Vol 4 (4) ◽  
pp. 2407-2440 ◽  
Author(s):  
T. Moutin ◽  
D. M. Karl ◽  
S. Duhamel ◽  
P. Rimmelin ◽  
P. Raimbault ◽  
...  

Abstract. Due to the low atmospheric input of phosphate into the open ocean, it is one of the key nutrients that could ultimately control primary production and carbon export into the deep ocean. The observed trend over the last 20 years, has shown a decrease in the dissolved inorganic phosphate (DIP) pool in the North Pacific gyre, which has been correlated to the increase in di-nitrogen (N2) fixation rates. Following a NW-SE transect, in the Southeast Pacific during the early austral summer (BIOSOPE cruise), we present data on DIP, dissolved organic phosphate (DOP), and particulate phosphate (PP) pools and DIP turnover times (TDIP) along with N2 fixation rates. We observed a decrease in DIP concentration from the edges to the centre of the gyre. Nevertheless the DIP concentrations remained above 100 nmol L−1 and TDIP were more than a month in the centre of the gyre: DIP availability remained largely above the level required for phosphate limitation. This contrasts with recent observations in the western Pacific Ocean at the same latitude (DIAPALIS cruises) where lower DIP concentrations (<20 nmol L−1) and TDIP<50 h were measured during the summer season. During the BIOSOPE cruise, N2 fixation rates were higher within the cold water upwelling near the Chilean coast. This observation contrasts with recently obtained model output for N2 fixation distribution in the South Pacific area and emphasises the importance of studying the main factors controlling this process. The South Pacific gyre can be considered a High P Low Chlorophyll (HPLC) oligotrophic area, which could potentially support high N2 fixation rates, and possibly carbon dioxide sequestration, if the primary ecophysiological controls, temperature and/or iron availability, were alleviated.

2008 ◽  
Vol 5 (1) ◽  
pp. 95-109 ◽  
Author(s):  
T. Moutin ◽  
D. M. Karl ◽  
S. Duhamel ◽  
P. Rimmelin ◽  
P. Raimbault ◽  
...  

Abstract. Due to the low atmospheric input of phosphate into the open ocean, it is one of the key nutrients that could ultimately control primary production and carbon export into the deep ocean. The observed trend over the last 20 years has shown a decrease in the dissolved inorganic phosphate (DIP) pool in the North Pacific gyre, which has been correlated to the increase in di-nitrogen (N2) fixation rates. Following a NW-SE transect, in the Southeast Pacific during the early austral summer (BIOSOPE cruise), we present data on DIP, dissolved organic phosphate (DOP) and particulate phosphate (PP) pools along with DIP turnover times (TDIP) and N2 fixation rates. We observed a decrease in DIP concentration from the edges to the centre of the gyre. Nevertheless the DIP concentrations remained above 100 nmol L−1 and T DIP was more than 6 months in the centre of the gyre; DIP availability remained largely above the level required for phosphate limitation to occur and the absence of Trichodesmium spp and low nitrogen fixation rates were likely to be controlled by other factors such as temperature or iron availability. This contrasts with recent observations in the North Pacific Ocean at the ALOHA station and in the western Pacific Ocean at the same latitude (DIAPALIS cruises) where lower DIP concentrations (<20 nmol L−1) and T DIP <50 h were measured during the summer season in the upper layer. The South Pacific gyre can be considered a High Phosphate Low Chlorophyll (HPLC) oligotrophic area, which could potentially support high N2 fixation rates and possibly carbon dioxide sequestration, if the primary ecophysiological controls, temperature and/or iron availability, were alleviated.


2008 ◽  
Vol 5 (2) ◽  
pp. 323-338 ◽  
Author(s):  
P. Raimbault ◽  
N. Garcia

Abstract. One of the major objectives of the BIOSOPE cruise, carried out on the R/V Atalante from October-November 2004 in the South Pacific Ocean, was to establish productivity rates along a zonal section traversing the oligotrophic South Pacific Gyre (SPG). These results were then compared to measurements obtained from the nutrient – replete waters in the Chilean upwelling and around the Marquesas Islands. A dual 13C/15N isotope technique was used to estimate the carbon fixation rates, inorganic nitrogen uptake (including dinitrogen fixation), ammonium (NH4) and nitrate (NO3) regeneration and release of dissolved organic nitrogen (DON). The SPG exhibited the lowest primary production rates (0.15 g C m−2 d−1), while rates were 7 to 20 times higher around the Marquesas Islands and in the Chilean upwelling, respectively. In the very low productive area of the SPG, most of the primary production was sustained by active regeneration processes that fuelled up to 95% of the biological nitrogen demand. Nitrification was active in the surface layer and often balanced the biological demand for nitrate, especially in the SPG. The percentage of nitrogen released as DON represented a large proportion of the inorganic nitrogen uptake (13–15% in average), reaching 26–41% in the SPG, where DON production played a major role in nitrogen cycling. Dinitrogen fixation was detectable over the whole study area; even in the Chilean upwelling, where rates as high as 3 nmoles l−1 d−1 were measured. In these nutrient-replete waters new production was very high (0.69±0.49 g C m−2 d−1) and essentially sustained by nitrate levels. In the SPG, dinitrogen fixation, although occurring at much lower daily rates (≈1–2 nmoles l−1 d−1), sustained up to 100% of the new production (0.008±0.007 g C m−2 d−1) which was two orders of magnitude lower than that measured in the upwelling. The annual N2-fixation of the South Pacific is estimated to 21×1012g, of which 1.34×1012g is for the SPG only. Even if our "snapshot" estimates of N2-fixation rates were lower than that expected from a recent ocean circulation model, these data confirm that the N-deficiency South Pacific Ocean would provide an ideal ecological niche for the proliferation of N2-fixers which are not yet identified.


2013 ◽  
Vol 26 (16) ◽  
pp. 6046-6066 ◽  
Author(s):  
Yalin Fan ◽  
Isaac M. Held ◽  
Shian-Jiann Lin ◽  
Xiaolan L. Wang

Abstract Surface wind (U10) and significant wave height (Hs) response to global warming are investigated using a coupled atmosphere–wave model by perturbing the sea surface temperatures (SSTs) with anomalies generated by the Working Group on Coupled Modeling (WGCM) phase 3 of the Coupled Model Intercomparison Project (CMIP3) coupled models that use the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4)/Special Report on Emissions Scenarios A1B (SRES A1B) scenario late in the twenty-first century. Several consistent changes were observed across all four realizations for the seasonal means: robust increase of U10 and Hs in the Southern Ocean for both the austral summer and winter due to the poleward shift of the jet stream; a dipole pattern of the U10 and Hs with increases in the northeast sector and decreases at the midlatitude during boreal winter in the North Atlantic due to the more frequent occurrence of the positive phases of the North Atlantic Oscillation (NAO); and strong decrease of U10 and Hs in the tropical western Pacific Ocean during austral summer, which might be caused by the joint effect of the weakening of the Walker circulation and the large hurricane frequency decrease in the South Pacific. Changes of the 99th percentile U10 and Hs are twice as strong as changes in the seasonal means, and the maximum changes are mainly dominated by the changes in hurricanes. Robust strong decreases of U10 and Hs in the South Pacific are obtained because of the large hurricane frequency decrease, while the results in the Northern Hemisphere basins differ among the models. An additional sensitivity experiment suggests that the qualitative response of U10 and Hs is not affected by using SST anomalies only and maintaining the radiative forcing unchanged (using 1980 values), as in this study.


2014 ◽  
Vol 27 (4) ◽  
pp. 1648-1658 ◽  
Author(s):  
Yuanhong Guan ◽  
Jieshun Zhu ◽  
Bohua Huang ◽  
Zeng-Zhen Hu ◽  
James L. Kinter III

Abstract Evaluating the climate hindcasts for 1982–2009 from the NCEP CFS Reanalysis and Reforecast (CFSRR) project using the Climate Forecast System, version 2 (CFSv2), this study identifies substantial areas of high prediction skill of the sea surface temperature (SST) in the South Pacific. The skill is the highest in the extratropical oceans on seasonal-to-interannual time scales, and it is only slightly lower than that for the El Niño–Southern Oscillation (ENSO). Two regions with the highest prediction skills in the South Pacific in both the CFSv2 and persistence hindcasts coincide with the active centers of opposite signs in the South Pacific Ocean dipole (SPOD) mode, a seesaw between the subtropical and extratropical SST in the South Pacific with a strong phase locking to austral summer. Interestingly, the CFSv2 prediction exhibits skillful predictions made three seasons ahead, more superior to the persistence forecast, suggesting significant dynamical predictability of the SPOD. An austral “spring predictability barrier” is noted in both the dynamical and persistence hindcasts. An analysis of the observational and model data suggests that the SPOD mode is significantly associated with ENSO, as an oceanic response to the atmospheric planetary wave trains forced by the anomalous atmospheric heating in the western Pacific. Although previous studies have demonstrated that the pattern of subtropical SST dipole is ubiquitous in the Southern Ocean, the SPOD has been least known and studied, compared with its counterparts in the south Indian and Atlantic Oceans. Since the SPOD is the most predictable oceanic mode in the whole Southern Hemisphere, its climate effects for local and remote regions should be further studied.


2020 ◽  
Vol 7 ◽  
Author(s):  
Eric J. Raes ◽  
Jodie van de Kamp ◽  
Levente Bodrossy ◽  
Allison A. Fong ◽  
Jessica Riekenberg ◽  
...  

Tellus ◽  
1974 ◽  
Vol 26 (1-2) ◽  
pp. 136-142 ◽  
Author(s):  
J. W. Swinnerton ◽  
R. A. Lamontagne

2021 ◽  
Vol 169 ◽  
pp. 112535
Author(s):  
Martin Thiel ◽  
Bárbara Barrera Lorca ◽  
Luis Bravo ◽  
Iván A. Hinojosa ◽  
Hugo Zeballos Meneses

Sign in / Sign up

Export Citation Format

Share Document