scholarly journals Phytoplankton distribution in the Western Arctic Ocean during a summer of exceptional ice retreat

2011 ◽  
Vol 8 (4) ◽  
pp. 6919-6970 ◽  
Author(s):  
P. Coupel ◽  
H. Y. Jin ◽  
D. Ruiz-Pino ◽  
J. F. Chen ◽  
S. H. Lee ◽  
...  

Abstract. A drastic ice decline in the Arctic Ocean, triggered by global warming, could generate rapid changes in the upper ocean layers. The ice retreat is particularly intense over the Canadian Basin where large ice free areas were observed since 2007. The CHINARE 2008 expedition was conducted in the Western Arctic (WA) ocean during a year of exceptional ice retreat (August–September 2008). This study investigates whether a significant reorganization of the primary producers in terms of species, biomass and productivity has to be observed in the WA as a result of the intense ice melting. Both pigments (HPLC) and taxonomy (microscopy) acquired in 2008 allowed to determine the phytoplanktonic distribution from Bering Strait (65° N) to extreme high latitudes over the Alpha Ridge (86° N) encompassing the Chukchi shelf, the Chukchi Borderland and the Canadian Basin. Two different types of phytoplankton communities were observed. Over the ice-free Chukchi shelf, relatively high chl-a concentrations (1–5 mg m−3) dominated by 80 % of diatoms. In the Canadian Basin, surface waters are oligotrophic (<0.1 mg m−3) and algal assemblages were dominated by haptophytes and diatoms while higher biomasses (~0.4 mg m−3) related to a deep Subsurface Chlorophyll Maximum (SCM) are associated to small-sized (nano and pico) phytoplankton. The ice melting onset allows to point out three different zones over the open basin: (i) the ice free condition characterized by deep and unproductive phytoplankton communities dominated by nanoplankton, (ii) an extended (78°–83° N) Active Melting Zone (AMZ) where light penetration associated to the stratification start off and enough nutrient availability drives to the highest biomass and primary production due to both diatoms and large flagellates, (iii) heavy ice conditions found north to 83° N allowing light limitation and consequently low biomass and primary production associated to pico and nanoplankton. To explain the poverty (Canadian Basin) and the richness (Chukchi shelf) of the WA, we explore the role of the nutrient-rich Pacific Waters, the bathymetry and two characteristics linked to the intense ice retreat: the stratification and the Surface Freshwater Layer (SFL). The freshwater accumulation induced a strong stratification limiting the nutrient input from the subsurface Pacific waters. This results in a biomass impoverishment of the well-lit layer and compels the phytoplankton to grow in subsurface. The phytoplankton distribution in the Chukchi Borderland and north Canadian Basin, during the summer of exceptional ice retreat (2008), suggested when compared to in-situ data from a more ice covered year (1994), recent changes with a decrease of the phytoplankton abundance while averaged biomass was similar. The 2008 obtained phytoplankton data in the WA provided a state of the ecosystem which will be useful to determine both past and future changes in relation with predicted sea ice decline.

2014 ◽  
Vol 11 (7) ◽  
pp. 1705-1716 ◽  
Author(s):  
A. Fujiwara ◽  
T. Hirawake ◽  
K. Suzuki ◽  
I. Imai ◽  
S.-I. Saitoh

Abstract. This study assesses the response of phytoplankton assemblages to recent climate change, especially with regard to the shrinking of sea ice in the northern Chukchi Sea of the western Arctic Ocean. Distribution patterns of phytoplankton groups in the late summers of 2008–2010 were analysed based on HPLC pigment signatures and, the following four major algal groups were inferred via multiple regression and cluster analyses: prasinophytes, diatoms, haptophytes and dinoflagellates. A remarkable interannual difference in the distribution pattern of the groups was found in the northern basin area. Haptophytes dominated and dispersed widely in warm surface waters in 2008, whereas prasinophytes dominated in cold water in 2009 and 2010. A difference in the onset date of sea ice retreat was evident among years–the sea ice retreat in 2008 was 1–2 months earlier than in 2009 and 2010. The spatial distribution of early sea ice retreat matched the areas in which a shift in algal community composition was observed. Steel-Dwass's multiple comparison tests were used to assess the physical, chemical and biological parameters of the four clusters. We found a statistically significant difference in temperature between the haptophyte-dominated cluster and the other clusters, suggesting that the change in the phytoplankton communities was related to the earlier sea ice retreat in 2008 and the corollary increase in sea surface temperatures. Longer periods of open water during the summer, which are expected in the future, may affect food webs and biogeochemical cycles in the western Arctic due to shifts in phytoplankton community structure.


2012 ◽  
Vol 9 (2) ◽  
pp. 2055-2093 ◽  
Author(s):  
P. Coupel ◽  
H. Y. Jin ◽  
M. Joo ◽  
R. Horner ◽  
H. A. Bouvet ◽  
...  

Abstract. A large part of the Pacific Arctic basin experiences ice-free conditions in summer as a result of sea ice cover steadily decreasing over the last decades. To evaluate the impact of ice retreat on the Arctic ecosystem, we investigated phytoplankton communities from coastal sites (Chukchi shelf) to northern deep basins (up to 86° N), during year 2008 of high melting. Pigment and taxonomy in situ data were acquired under different ice regime: the ice -free basins (IFB, 74°–77° N), the marginal ice zone (MIZ, 77°–80° N) and the heavy ice covered basins (HIB, >80° N). Our results suggest that extensive ice melting provided favorable conditions to chrysophytes and prymnesiophytes growth and more hinospitable to pico-sized prasinophytes and micro-sized dinoflagellates. Larger cell diatoms were less abundant in the IFB while dominant in the MIZ of the deep Canadian basin. Our data were compared to those obtained during more icy years, 1994 and to a lesser extent, 2002. Freshening, stratification, light and nutrient availability are discussed as possible causes for observed phytoplankton communities under high and low sea ice cover.


2013 ◽  
Vol 10 (9) ◽  
pp. 15153-15180 ◽  
Author(s):  
A. Fujiwara ◽  
T. Hirawake ◽  
K. Suzuki ◽  
I. Imai ◽  
S.-I. Saitoh

Abstract. This study assesses the response of phytoplankton assemblages to recent climate change, especially with regard to the shrinking of sea ice in the northern Chukchi Sea of the western Arctic Ocean. Distribution patterns of phytoplankton groups in the late summers of 2008–2010 were analyzed based on HPLC pigment signatures and, the following four major algal groups were inferred via multiple regression and cluster analyses: prasinophytes, diatoms, haptophytes and dinoflagellates. A remarkable interannual difference in the distribution pattern of the groups was found in the northern basin area. Haptophytes dominated and dispersed widely in warm surface waters in 2008, whereas prasinophytes dominated in cold water in 2009 and 2010. A difference in the onset date of sea ice retreat was evident among years – the sea ice retreat in 2008 was 1–2 months earlier than in 2009 and 2010. The spatial distribution of early sea ice retreat matched the areas in which a shift in algal community composition was observed. Steel-Dwass's multiple comparison tests were used to assess the physical, chemical and biological parameters of the four clusters. We found a statistically significant difference in temperature between the haptophyte-dominated cluster and the other clusters, suggesting that the change in the phytoplankton communities was related to the earlier sea ice retreat in 2008 and the corollary increase in sea surface temperatures. Longer periods of open water during the summer, which are expected in the future, may affect food webs and biogeochemical cycles in the western Arctic due to shifts in phytoplankton community structure.


2017 ◽  
Author(s):  
Sang Heon Lee ◽  
Jang Han Lee ◽  
Howon Lee ◽  
Jae Joong Kang ◽  
Jae Hyung Lee ◽  
...  

Abstract. The Laptev and East Siberian seas are the least biologically studied region in the Arctic Ocean, although they are highly dynamic in terms of active processing of organic matter impacting the transport to the deep Arctic Ocean. Field-measured carbon and nitrogen uptake rates of phytoplankton were conducted in the Laptev and East Siberian seas as part of the NABOS (Nansen and Amundsen Basins Observational System) program. Major inorganic nutrients were mostly depleted at 100–50 % light depths but were not depleted within the euphotic depths in the Laptev and East Siberian seas. The water column-integrated chl-a concentration in this study was significantly higher than that in the western Arctic Ocean (t-test, p > 0.01). Unexpectedly, the daily carbon and nitrogen uptake rates in this study (average ± S.D. = 110.3 ± 88.3 mg C m−2 d−1 and 37.0 ± 25.8 mg N m−2 d−1, respectively) are within previously reported ranges. Surprisingly, the annual primary production (13.2 g C m−2) measured in the field during the vegetative season is approximately one order of magnitude lower than the primary production reported from a satellite–based estimation. Further validation using field-measured observations is necessary for a better projection of the ecosystem in the Laptev and East Siberian seas responding to ongoing climate change.


2020 ◽  
Vol 125 (7) ◽  
Author(s):  
Samuel B. Mukasa ◽  
Alexandre Andronikov ◽  
Kelley Brumley ◽  
Larry A. Mayer ◽  
Andrew Armstrong

2017 ◽  
Vol 73 (3) ◽  
pp. 345-364 ◽  
Author(s):  
Maung-Saw-Htoo-Thaw ◽  
Shizuka Ohara ◽  
Kazumi Matsuoka ◽  
Tatsuya Yurimoto ◽  
Shota Higo ◽  
...  

2020 ◽  
Author(s):  
Junjie Wu ◽  
Ruediger Stein ◽  
Kirsten Fahl ◽  
Nicole Syring ◽  
Jens Hefter ◽  
...  

&lt;p&gt;The Arctic is changing rapidly, and one of the main and most obvious features is the drastic sea-ice retreat over the past few decades. Over such time scales, observations are deficient and not long enough for deciphering the processes controlling this accelerated sea-ice retreat. Thus, high-resolution, longer-term proxy records are needed for reconstruction of natural climate variability. In this context, we applied a biomarker approach on the well-dated sediment core ARA04C/37 recovered in the southern Beaufort Sea directly off the Mackenzie River, an area that is characterized by strong seasonal variability in sea-ice cover, primary productivity and terrigenous (riverine) input. Based on our biomarker records, the Beaufort Sea region was nearly ice-free in summer during the late Deglacial to early Holocene (14 to 8 ka). During the mid-late Holocene (8 to 0 ka), a seasonal sea-ice cover developed, coinciding with a drop in both terrigenous sediment flux and primary production. Supported by multiple proxy records, two major flood events characterized by prominent maxima in sediment flux occurred near 13 and 11 ka. The former is coincident with the Younger Dryas Cooling Event probably triggered by a &amp;#160;freshwater outburst from the Lake Agassiz. The origin of the second (younger) one might represent a second Mackenzie flood event, coinciding with meltwater pulse IB/post-glacial flooding of the shelf and related increased coastal erosion. Here, our interpretation remains a little bit speculative, and further research is needed and also in progress.&lt;/p&gt;


2012 ◽  
Vol 9 (11) ◽  
pp. 4835-4850 ◽  
Author(s):  
P. Coupel ◽  
H. Y. Jin ◽  
M. Joo ◽  
R. Horner ◽  
H. A. Bouvet ◽  
...  

Abstract. A large part of the Pacific Arctic basin experiences ice-free conditions in summer as a result of sea ice cover steadily decreasing over the last decades. To evaluate the impact of sea ice retreat on the marine ecosystem, phytoplankton in situ observations were acquired over the Chukchi shelf and the Canadian basin in 2008, a year of high melting. Pigment analyses and taxonomy enumerations were used to characterise the distribution of main phytoplanktonic groups. Marked spatial variability of the phytoplankton distribution was observed in summer 2008. Comparison of eight phytoplankton functional groups and 3 size-classes (pico-, nano- and micro-phytoplankton) also showed significant differences in abundance, biomass and distribution between summer of low ice cover (2008) and heavy ice summer (1994). Environmental parameters such as freshening, stratification, light and nutrient availability are discussed as possible causes to explain the observed differences in phytoplankton community structure between 1994 and 2008.


Sign in / Sign up

Export Citation Format

Share Document