sea ice retreat
Recently Published Documents


TOTAL DOCUMENTS

125
(FIVE YEARS 42)

H-INDEX

30
(FIVE YEARS 3)

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
G. W. K. Moore ◽  
K. Våge ◽  
I. A. Renfrew ◽  
R. S. Pickart

AbstractWater mass transformation in the Nordic and Barents Seas, triggered by air-sea heat fluxes, is an integral component of the Atlantic Meridional Overturning Circulation (AMOC). These regions are undergoing rapid warming, associated with a retreat in ice cover. Here we present an analysis covering 1950−2020 of the spatiotemporal variability of the air-sea heat fluxes along the region’s boundary currents, where water mass transformation impacts are large. We find there is an increase in the air-sea heat fluxes along these currents that is a function of the currents’ orientation relative to the axis of sea-ice change suggesting enhanced water mass transformation is occurring. Previous work has shown a reduction in heat fluxes in the interior of the Nordic Seas. As a result, a reorganization seems to be underway in where water mass transformation occurs, that needs to be considered when ascertaining how the AMOC will respond to a warming climate.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0261418
Author(s):  
Hisatomo Waga ◽  
Hajo Eicken ◽  
Toru Hirawake ◽  
Yasushi Fukamachi

The Arctic is experiencing rapid changes in sea-ice seasonality and extent, with significant consequences for primary production. With the importance of accurate monitoring of spring phytoplankton dynamics in a changing Arctic, this study further examines the previously established critical relationship between spring phytoplankton bloom types and timing of the sea-ice retreat for broader temporal and spatial coverages, with a particular focus on the Pacific Arctic for 2003–2019. To this end, time-series of satellite-retrieved phytoplankton biomass were modeled using a parametric Gaussian function, as an effective approach to capture the development and decay of phytoplankton blooms. Our sensitivity analysis demonstrated accurate estimates of timing and presence/absence of peaks in phytoplankton biomass even with some missing values, suggesting the parametric Gaussian function is a powerful tool for capturing the development and decay of phytoplankton blooms. Based on the timing and presence/absence of a peak in phytoplankton biomass and following the classification developed by the previous exploratory work, spring bloom types are classified into three groups (under-ice blooms, probable under-ice blooms, and marginal ice zone blooms). Our results showed that the proportion of under-ice blooms was higher in the Chukchi Sea than in the Bering Sea. The probable under-ice blooms registered as the dominant bloom types in a wide area of the Pacific Arctic, whereas the marginal ice zone bloom was a relatively minor bloom type across the Pacific Arctic. Associated with a shift of sea-ice retreat timing toward earlier dates, we confirmed previous findings from the Chukchi Sea of recent shifts in phytoplankton bloom types from under-ice blooms to marginal ice zone blooms and demonstrated that this pattern holds for the broader Pacific Arctic sector for the time period 2003–2019. Overall, the present study provided additional evidence of the changing sea-ice retreat timing that can drive variations in phytoplankton bloom dynamics, which contributes to addressing the detection and consistent monitoring of the biophysical responses to the changing environments in the Pacific Arctic.


2021 ◽  
Vol 12 (1) ◽  
pp. 268-284
Author(s):  
Jóhann Sigurjónsson

This paper reflects on several aspects of the Agreement to Prevent Unregulated High Seas Fisheries in the Central Arctic Ocean from the standpoint of Iceland, prior to, during and at the conclusion of the negotiations of the Agreement in late 2017. Particular reference is made to UNCLOS and coastal State interests, status of knowledge on the fish stocks and the importance of scientific cooperation which the Agreement facilitates. During the years 2008–2015, the so-called Arctic Five consulted on cooperation in Arctic matters including future management of fisheries in the central Arctic Ocean. These rather exclusive cooperative efforts were criticised by Iceland and other States that felt these matters were to be dealt with in a broader international context. It seems evident that Iceland’s desire to become a full participant in the process during the subsequent years was both based on legal arguments as well as fair and natural geopolitical reasons. Iceland became a participant in the negotiations in December 2015. The final version of the Agreement is a fully fledged platform for coordinating scientific research and it even allows for interim management measures until future regional management framework is in place. In essence, the Agreement can be taken as a regional fisheries management arrangement (RFMA), since most elements of relevance are incorporated in accordance with the 1995 UN Fish Stocks Agreement. The opening of the central Arctic Ocean for fishing is not likely to take place in the nearest future, although the development of sea ice retreat is currently faster than earlier anticipated. While the Agreement is today regarded as being historic due to its precautionary approach, future may prove that it was a timely arrangement in a fast-moving world with dramatic changes taking place in the Arctic Ocean.


2021 ◽  
pp. 1
Author(s):  
Anaïs Bretones ◽  
Kerim H. Nisancioglu ◽  
Mari F. Jensen ◽  
Ailin Brakstad ◽  
Shuting Yang

AbstractWhile a rapid sea-ice retreat in the Arctic has become ubiquitous, the potential weakening of the Atlantic Meridional Overturning Circulation (AMOC) in response to global warming is still under debate. As deep mixing occurs in the open-ocean close to the sea-ice edge, the strength and vertical extent of the AMOC is likely to respond to ongoing and future sea-ice retreat. Here, we investigate the link between changes in Arctic sea-ice cover and AMOC strength in a long simulation with the EC-Earth-PISM climate model under the emission scenario RCP8.5. The extended duration of the experiment (years 1850-2300) captures the disappearance of summer sea ice in 2060 and the removal of winter sea ice in 2165. By introducing a new metric, the Arctic Meridional Overturning Circulation (ArMOC), we document changes beyond the Greenland-Scotland Ridge and into the central Arctic. We find an ArMOC strengthening as the areas of deep mixing move north, following the retreating winter sea-ice edge into the Nansen Basin. At the same time, mixing in the Labrador and Greenland Seas reduces and the AMOC weakens. As the winter sea-ice edge retreats further into the regions with high surface freshwater content in the central Arctic Basin, the mixing becomes shallower and the ArMOC weakens. Our results suggest that the location of deep-water formation plays a decisive role in the structure and strength of the ArMOC; however, the intermittent strengthening of the ArMOC and convection north of the Greenland-Scotland Ridge cannot compensate for the progressive weakening of the AMOC.


2021 ◽  
Vol 13 (16) ◽  
pp. 3201
Author(s):  
Xi Wang ◽  
Jian Liu ◽  
Bingyun Yang ◽  
Yansong Bao ◽  
George P. Petropoulos ◽  
...  

A long-term dataset of 38 years (1982–2019) from the Advanced Very High Resolution Radiometer (AVHRR) satellite observations is applied to investigate the spatio-temporal seasonal trends in cloud fraction, surface downwelling longwave flux, and surface upwelling longwave flux over the Arctic seas (60~90°N) by the non-parametric methods. The results presented here provide a further contribution to understand the cloud cover and longwave surface radiation trends over the Arctic seas, and their correlations to the shrinking sea ice. Our results suggest that the cloud fraction shows a positive trend for all seasons since 2008. Both surface downwelling and upwelling longwave fluxes present significant positive trends since 1982 with higher magnitudes in autumn and winter. The spatial distribution of the trends is nearly consistent between the cloud fraction and the surface longwave radiation, except for spring over the Chukchi and Beaufort Seas. We further obtained a significant negative correlation between cloud fraction (surface downwelling/upwelling longwave fluxes) and sea-ice concentration during autumn, which is largest in magnitude for regions with substantial sea ice retreat. We found that the negative correlation between cloud fraction and sea-ice concentration is not as strong as that for the surface downwelling longwave flux. It indicates the increase in cloudiness may result in positive anomalies in surface downwelling longwave flux which is highly correlated with the sea-ice retreat in autumn.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Alex Crawford ◽  
Julienne Stroeve ◽  
Abigail Smith ◽  
Alexandra Jahn

AbstractThe shrinking of Arctic-wide September sea ice extent is often cited as an indicator of modern climate change; however, the timing of seasonal sea ice retreat/advance and the length of the open-water period are often more relevant to stakeholders working at regional and local scales. Here we highlight changes in regional open-water periods at multiple warming thresholds. We show that, in the latest generation of models from the Coupled Model Intercomparison Project (CMIP6), the open-water period lengthens by 63 days on average with 2 °C of global warming above the 1850-1900 average, and by over 90 days in several Arctic seas. Nearly the entire Arctic, including the Transpolar Sea Route, has at least 3 months of open water per year with 3.5 °C warming, and at least 6 months with 5 °C warming. Model bias compared to satellite data suggests that even such dramatic projections may be conservative.


2021 ◽  
Vol 34 (10) ◽  
pp. 3889-3905
Author(s):  
Chad W. Thackeray ◽  
Alex Hall ◽  
Mark D. Zelinka ◽  
Christopher G. Fletcher

AbstractAn emergent constraint (EC) is a popular model evaluation technique, which offers the potential to reduce intermodel variability in projections of climate change. Two examples have previously been laid out for future surface albedo feedbacks (SAF) stemming from loss of Northern Hemisphere (NH) snow cover (SAFsnow) and sea ice (SAFice). These processes also have a modern-day analog that occurs each year as snow and sea ice retreat from their seasonal maxima, which is strongly correlated with future SAF across an ensemble of climate models. The newly released CMIP6 ensemble offers the chance to test prior constraints through out-of-sample verification, an important examination of EC robustness. Here, we show that the SAFsnow EC is equally strong in CMIP6 as it was in past generations, while the SAFice EC is also shown to exist in CMIP6, but with different, slightly weaker characteristics. We find that the CMIP6 mean NH SAF exhibits a global feedback of 0.25 ± 0.05 W m−2 K−1, or ~61% of the total global albedo feedback, largely in line with prior generations despite its increased climate sensitivity. The NH SAF can be broken down into similar contributions from snow and sea ice over the twenty-first century in CMIP6. Crucially, intermodel variability in seasonal SAFsnow and SAFice is largely unchanged from CMIP5 because of poor outlier simulations of snow cover, surface albedo, and sea ice thickness. These outliers act to mask the noted improvement from many models when it comes to SAFice, and to a lesser extent SAFsnow.


2021 ◽  
pp. 1-40
Author(s):  
Yue Wu ◽  
David P. Stevens ◽  
Ian A. Renfrew ◽  
Xiaoming Zhai

AbstractThe ocean response to wintertime sea-ice retreat is investigated in the coupled climate model HiGEM. We focus on the marginal ice zone and adjacent waters of the Nordic Seas, where the air-sea temperature difference can be large during periods of off-ice winds promoting high heat flux events. Both control and transient climate model ensembles are examined, which allows us to isolate the ocean response due to sea-ice retreat from the response due to climate change. As the wintertime sea-ice edge retreats towards the Greenland coastline, it exposes waters that were previously covered by ice which enhances turbulent heat loss and mechanical mixing, leading to a greater loss of buoyancy and deeper vertical mixing in this location. However, under global warming, the buoyancy loss is inhibited as the atmosphere warms more rapidly than the ocean which reduces the air-sea temperature difference. This occurs most prominently further away from the retreating ice edge, over the Greenland Sea gyre. Over the gyre the upper ocean also warms significantly, resulting in a more stratified water column and, as a consequence, a reduction in the depth of convective mixing. In contrast, closer to the coast the effect of global warming is overshadowed by the effect of the sea-ice retreat, leading to significant changes in ocean temperature and salinity in the vicinity of the marginal ice zone.


Sign in / Sign up

Export Citation Format

Share Document