scholarly journals A novel method for diagnosing seasonal to inter-annual surface ocean carbon dynamics from bottle data using neural networks

2012 ◽  
Vol 9 (11) ◽  
pp. 15329-15380 ◽  
Author(s):  
T. P. Sasse ◽  
B. I. McNeil ◽  
G. Abramowitz

Abstract. The ocean's role in modulating the observed 1–7 Pg C yr−1 inter-annual variability in atmospheric CO2 growth rate is an important, but poorly constrained process due to sparse spatio-temporal ocean carbon measurements. Here, we investigate and develop a non-linear empirical approach to predict inorganic CO2 concentrations (total carbon dioxide (CT) and total alkalinity (AT) in the global ocean mixed-layer from hydrographic properties (temperature, salinity, dissolved oxygen and nutrients). The benefit of this approach is that once the empirical relationship is established, it can be applied to hydrographic datasets that have better spatio-temporal coverage, and therefore provide an additional constraint to diagnose ocean carbon dynamics globally. Previous empirical approaches have employed multiple linear regressions (MLR), and relied on ad-hoc geographic and temporal partitioning of carbon data to constrain complex global carbon dynamics in the mixed-layer. Synthesising a new global CT/AT carbon bottle dataset consisting of ~33 000 measurements in the open ocean mixed-layer, we develop a neural network based approach to better constrain the non-linear carbon system. The approach classifies features in the global biogeochemical dataset based on their similarity and homogeneity in a self-organizing map (SOM; Kohonen, 1988). After the initial SOM analysis, which includes geographic constraints, we apply a local linear optimizer to the neural network which considerably enhances the predictive skill of the new approach. We call this new approach SOMLO, or self-organizing multiple linear output. Using independent bottle carbon data, we compare a traditional MLR analysis to our SOMLO approach to capture the spatial CT and AT distributions. We find the SOMLO approach improves predictive skill globally by 19% for CT, with a global capacity to predict CT to within 10.9 μmol kg−1 (9.2 μmol kg−1 for AT. The non-linear SOMLO approach is particularly powerful in complex, but important regions like the Southern Ocean, North Atlantic and equatorial Pacific where residual standard errors were reduced between 25–40% over traditional linear methods. We further test the SOMLO technique using the Bermuda Atlantic time-series (BATS) and Hawaiian ocean (HOT) datasets, where hydrographic data was capable of explaining 90% of the seasonal cycle and inter-annual variability at those multi-decadal time-series stations.

2013 ◽  
Vol 10 (6) ◽  
pp. 4319-4340 ◽  
Author(s):  
T. P. Sasse ◽  
B. I. McNeil ◽  
G. Abramowitz

Abstract. The ocean's role in modulating the observed 1–7 Pg C yr−1 inter-annual variability in atmospheric CO2 growth rate is an important, but poorly constrained process due to current spatio-temporal limitations in ocean carbon measurements. Here, we investigate and develop a non-linear empirical approach to predict inorganic CO2 concentrations (total carbon dioxide (CT) and total alkalinity (AT)) in the global ocean mixed layer from hydrographic properties (temperature, salinity, dissolved oxygen and nutrients). The benefit of this approach is that once the empirical relationship is established, it can be applied to hydrographic datasets that have better spatio-temporal coverage, and therefore provide an additional constraint to diagnose ocean carbon dynamics globally. Previous empirical approaches have employed multiple linear regressions (MLR) and relied on ad hoc geographic and temporal partitioning of carbon data to constrain complex global carbon dynamics in the mixed layer. Synthesizing a new global CT/AT carbon bottle dataset consisting of ~33 000 measurements in the open ocean mixed layer, we develop a neural network based approach to better constrain the non-linear carbon system. The approach classifies features in the global biogeochemical dataset based on their similarity and homogeneity in a self-organizing map (SOM; Kohonen, 1988). After the initial SOM analysis, which includes geographic constraints, we apply a local linear optimizer to the neural network, which considerably enhances the predictive skill of the new approach. We call this new approach SOMLO, or self-organizing multiple linear output. Using independent bottle carbon data, we compare a traditional MLR analysis to our SOMLO approach to capture the spatial CT and AT distributions. We find the SOMLO approach improves predictive skill globally by 19% for CT, with a global capacity to predict CT to within 10.9 μmol kg−1 (9.2 μmol kg−1 for AT). The non-linear SOMLO approach is particularly powerful in complex but important regions like the Southern Ocean, North Atlantic and equatorial Pacific, where residual standard errors were reduced between 25 and 40% over traditional linear methods. We further test the SOMLO technique using the Bermuda Atlantic time series (BATS) and Hawaiian ocean time series (HOT) datasets, where hydrographic data was capable of explaining 90% of the seasonal cycle and inter-annual variability at those multi-decadal time-series stations.


Author(s):  
Maryem Rhanoui ◽  
Siham Yousfi ◽  
Mounia Mikram ◽  
Hajar Merizak

<div style="’text-align: justify;"><p>Financial time series are volatile, non-stationary and non-linear data that are affected by external economic factors. There is several performant predictive approaches such as univariate ARIMA model and more recently Recurrent Neural Network. The accurate forecasting of budget data is a strategic and challenging task for an optimal management of resources, it requires the use of the most accurate model. We propose a predictive approach that uses and compares the Machine Learning ARIMA model and Deep Learning Recurrent LSTM model. The application and the comparative analysis shows that the LSTM model outperforms the ARIMA model, mainly thanks to the LSTMs ability to learn non-linear relationship from data.</p></div>


ICANN ’93 ◽  
1993 ◽  
pp. 857-857
Author(s):  
F. Qendro ◽  
R. Lengelle ◽  
T. Denoeux ◽  
P. Gaillard

2004 ◽  
Vol 11 (5/6) ◽  
pp. 683-689 ◽  
Author(s):  
B. M. Monge Sanz ◽  
N. J. Medrano Marqués

Abstract. This work is focused on the application of neural network based models to the analysis of total ozone (TO) time series. Processes that affect total ozone are extremely non linear, especially at the considered European mid-latitudes. Artificial neural networks (ANNs) are intrinsically non-linear systems, hence they are expected to cope with TO series better than classical statistics do. Moreover, neural networks do not assume the stationarity of the data series so they are also able to follow time-changing situations among the implicated variables. These two features turn NNs into a promising tool to catch the interactions between atmospheric variables, and therefore to extract as much information as possible from the available data in order to make, for example, time series reconstructions or future predictions. Models based on NNs have also proved to be very suitable for the treatment of missing values within the data series. In this paper we present several models based on neural networks to fill the missing periods of data within a total ozone time series, and models able to reconstruct the data series. The results released by the ANNs have been compared with those obtained by using classical statistics methods, and better accuracy has been achieved with the non linear ANNs techniques. Different network structures and training strategies have been tested depending on the specific task to be accomplished.


2020 ◽  
Vol 12 (4) ◽  
pp. 1
Author(s):  
Debasis Mithiya ◽  
Kumarjit Mandal ◽  
Simanti Bandyopadhyay

Indian agriculture depends heavily on rainfall. It not only influences agricultural production but also affects the prices of all agricultural commodities. Rainfall is an exogenous variable which is beyond farmers’ control. The outcome of rainfall fluctuation is quite natural. It has been observed that fluctuation in rainfall brings about fluctuation in output leading to price changes. Considering the importance of rainfall in determining agricultural production and prices, the study has attempted to forecast monthly rainfall in India with the help of time series analysis using monthly rainfall data. Both linear and non-linear models have been used. The value of diagnostic checking parameters (MAE, MSE, RMSE) is lower in a non-linear model compared to a linear one. The non-linear model - Artificial Neural Network (ANN) has been chosen instead of linear models, namely, simple seasonal exponential smoothing and Seasonal Auto-Regressive Integrated Moving Average to forecast rainfall. This will help to identify the proper cropping pattern.


Sign in / Sign up

Export Citation Format

Share Document