Dissolution of amphibole asbestos in modified Gamble’s solution at pH 4.5: a combined ICP-OES, XPS and TEM investigation

Author(s):  
alessandro pacella ◽  
elisa nardi ◽  
maria rita montereali ◽  
marzia fantauzzi ◽  
antonella rossi ◽  
...  

<p>This study analizes the dissolution reactions, and the corresponding surface modifications, of two amphibole asbestos incubated for 1, 24, 48, 168 and 720 h in a modified Gamble’s solution at pH 4.5. The investigated samples are UICC crocidolite from Koegas Mine, Northern Cape (South Africa), and fibrous tremolite from Montgomery County, Maryland (USA). Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) was used to monitor the ion release into solution, X-Ray Photoelectron Spectroscopy (XPS) was performed to unveil the chemistry of the leached surface, and High Resolution Transmission Electron Microscopy (HR-TEM) was exploited for monitoring the structural modifications of the fibres.</p><p>An incongruent cation mobilization was observed in both samples. Fe mobilization was detected only in UICC crocidolite, due to the occurrence of Fe-bearing accessory phases in the sample (siderite, iron carbonate, and minnesotaite, an iron-bearing phyllosilicate). Notably, tremolite lifetime is shown to be roughly ten times that of UICC crocidolite under the same experimental conditions. This result agrees with previous dissolution studies at pH 7.4 indicating a higher dissolution and surface alteration for UICC crocidolite with respect to tremolite.</p>

Author(s):  
Masoud Aghahoseini ◽  
Gholamhassan Azimi ◽  
M. K. Amini

Determination of traces of Cd, Co, Cu, Mn and Pb elements in zirconium and its alloys by inductively coupled plasma optical emission spectrometry (ICP OES) suffers from severe spectral interferences...


2014 ◽  
Vol 97 (3) ◽  
pp. 687-699 ◽  
Author(s):  
James M Bartos ◽  
Barton L Boggs ◽  
J Harold Falls ◽  
Sanford A Siegel

Abstract A two-part single-laboratory validation study was conducted for determination of the P and K content in commercial fertilizer materials by inductively coupled plasma-optical emission spectrometry (ICP- OES). While several methods exist for determination of P and K in fertilizer products, the main focus of this study was on ICP-OES determination, which offers several unique advantages. Fertilizer samples with consensus P and K values from the Magruder and Association of Fertilizer and Phosphate Chemists (AFPC) check sample programs were selected for this study. Validation materials ranging from 4.4 to 52.4% P2O5 (1.7 to 22.7% P) and 3 to 62% K2O (2.5 to 51.5% K) were utilized. Because all P and K compounds contained in fertilizer materials are not "available" for plants to use, this study was conducted in two parts. Part A focused on ammonium citrate–disodium EDTA as the extraction solvent, as it estimates the pool of fertilizer P and K that is considered available to plants. Part B focused on hydrochloric acid as the digestion solvent, as it estimates the total P and K content of the fertilizer product. Selectivity studies indicated that this method can have a high bias for fertilizer products containing sources of phosphite or organic P compared to gravimetric or colorimetric methods that measure just orthophosphate. Provided the analytical challenges outlined in this study are addressed, this method offers the potential for a quick, accurate, and safe alternative for determining the P and K content of commercial inorganic fertilizer materials.


Sign in / Sign up

Export Citation Format

Share Document