Climate variability during the Late Paleozoic Ice Age in the southwestern Gondwana: records of orbital and millennial-scale cycles in the Carboniferous rhythmite of the Paraná Basin

Author(s):  
Marcus Kochhann ◽  
Joice Cagliari ◽  
Karlos Kochhann ◽  
Daniel Franco

<p>The Late Paleozoic Ice Age (LPIA), one of the best known and prolonged glaciation events in Earth's history, resulted in the widespread deposition of glacial sediments over Gondwana (Crowell, 1999). Some of the most important LPIA deposits of the multiple glacial-deglacial episodes (Isbell et al., 2003) were preserved in the Itararé Group of the Paraná Basin (Brazil). This unit presents continental and marine glacially-influenced deposits formed by advances and retreats of glaciers and consists in an opportunity to better understand the mechanisms forcing climate shifts during the LPIA. In low latitudes, the deposition of the Carboniferous cyclothems was controlled by long- and short-eccentricity (Davydov et al., 2010). In high latitudes, orbital-scale climate cycles may also be preserved in the sedimentary succession. We aim to recognize whether or not orbital and millennial-scale climate cycles are preserved in the sedimentary succession of a core drilled in the southeastern border of the Paraná Basin. Here, we present the first cyclostratigraphic study based on X-ray fluorescence records from a 27 m-long interval of LPIA rhythmites of the Rio do Sul Formation (top of the Itararé Group). The sedimentary succession is composed of lithological couplets of fine-grained siliciclastic sediments, locally displaying subtle plane-bedding. Such rhythmites are characterized by abrupt contacts between couplets and normal grading internally. TiO<sub>2</sub> and Fe<sub>2</sub>O<sub>3</sub> vary in phase and display well-defined cyclicities in the stratigraphic domain. The TiO<sub>2</sub> series presents millennial and orbital scale periodicities. Variations in the concentrations of the analyzed terrigenous components are likely indicative of glacial-interglacial changes, reflected by advances and retreats of glaciers under drier and wetter climate conditions, respectively. Here we show that these high latitude glacial-interglacial cycles were probably paced by short-eccentricity, as previously suggested for Carboniferous cyclothems in low latitude deposits, and highlight the importance of millennial-scale climate cycles forcing high latitudes glacial-related deposits, similar to patterns seen in Pleistocene records.</p><p> </p><p>References:</p><p>Crowell, J. C. (1999). Pre-Mesozoic Ice Ages: Their Bearing on Understanding the Climate 375 System. Geologic Society of America Memoir 192, pp. 1–112.</p><p>Davydov, V. I., Crowley, J. L., Schmitz, M. D., & Poletaev, V. I. (2010). High-precision U-Pb zircon age calibration of the global Carboniferous time scale and Milankovitch band cyclicity in the Donets Basin, eastern Ukraine. Geochemistry, Geophysics, Geosystems, 11.</p><p>Isbell, J. L., Miller, M. F., Wolfe, K. L., & Lenaker, P. A. (2003). Timing of late Paleozoic glaciation in Gondwana: Was glaciation responsible for the development of Northern Hemisphere cyclothems? In Geologic Society of America Special Paper 370, pp. 5–24.</p>

2021 ◽  
Author(s):  
Peixin Zhang ◽  
Jing Lu ◽  
Minfang Yang ◽  
Longyi Shao ◽  
Ziwei Wang ◽  
...  

Abstract. The Late Paleozoic Ice Age (LPIA; ca. 360–260 million years ago) was one of the most significant glacial events in Earth history that records cycles of ice advance and retreat in southern high-latitude Gondwana and provides a deep-time perspective for climate-glaciation coevolution. However, climate records from the LIPA are poorly understood in low latitudes, particularly in the North China Plate (NCP) on the eastern Palaeo-Tethys. We address this through a detailed mineralogical study of the marine-continental sedimentary succession in the Yuzhou Coalfield from the southern NCP in which we apply Zircon U-Pb dating, biostratigraphy, and high-resolution clay mineral composition to reconstruct latest Carboniferous to early Permian chronostratigraphy and climate change. The Benxi, Taiyuan, and Shanxi formations in the study area are assigned to the Gzhelian, Asselian-Artinskian, and Kungurian-Roadian stages respectively and the Carboniferous Permian lithostratigraphy across NCP recognized as widely diachronous. Detrital micromorphology of kaolinite under scanning electron microscopy and illite crystallization indicates kaolinite contents to be a robust proxy for palaeoclimate reconstruction. Kaolinite data show alternating warm-humid and cool-humid climate conditions that are roughly consistent with the calibrated glacial-interglacial successions recognized in high-latitude eastern Australia, including the glaciations P1 (Asselian-early Sakmarian) and P2 (late Sakmarian-early Artinskian), as well as the climatic transition to glaciation P3 (Roadian). Our results indicate a comparatively cool-humid and warm-humid climate mode in low-latitude NCP during glacial and interglacial periods, and this is a significant step toward connecting climate change in low-latitudes to high-latitude glaciation during the LPIA.


2020 ◽  
Author(s):  
Joice Cagliari ◽  
Mark D. Schmitz ◽  
Ernesto L. C. Lavina ◽  
Renata G. Netto

<p>The Late Paleozoic Ice Age (LPIA), one of the best known and prolonged glaciation events in Earth's history, resulted in the deposition of glacial sediments over Gondwana. The terminal deglaciation, a diachronic event starting earlier at the western and later in the eastern part of the continent, caused sea level rise and the widespread deposition of transgressive sedimentary successions. The Paraná Basin is one of these basins recording both glacial influenced (Itararé Group) and post-glacial (Guatá Group) deposits. However, the absence of Carboniferous and Permian guide fossils has motivated a chronostratigraphic approach based on plants and palynomorphs, which associated with sparse radioisotopic ages have suggested that transition between the glacial-influenced and the post-glacial succession would have occurred in the Sakmarian, early Permian (Holz et al., 2010).  These results are in conflict with recent studies that indicate LPIA glacial deposits are constrained to the Carboniferous (Cagliari et al., 2016; Griffis et al., 2019). Therefore, in this study we present new high-precision single-crystal CA-ID-TIMS U-Pb radioisotopic ages for the glacial influenced (one samples) and post-glacial (six samples) deposits in the southern Paraná Basin. Along with these new radioisotopic ages, a Bayesian age-depth model was applied to constrain the age of the LPIA demise in the southern Paraná Basin, which also represents the icehouse-greenhouse transition. The resulting age for the Rio do Sul Formation, topmost unit of the Itararé Group, is Ghzelian (Carboniferous). For the Rio Bonito Formation, basal Guatá Group, all samples are Asselian (Permian). The results reinforce that glacial-influenced deposits in the southern Paraná Basin are constrained to the Carboniferous. Based upon the depth-age model, the icehouse to greenhouse transition likely occurred in the Late Carboníferous. The integration between our results and recent published high-resolution U-Pb ages allowed us to detail the Carboniferous-Permian chronostratigraphic framework of the southern Paraná Basin.</p><p> </p><p>References:</p><p>Holz, M., França, A.B., Souza, P.A., Iannuzzi, R., Rohn, R. (2010). A stratigraphic chart of the Late Carboniferous/Permian succession of the eastern border of the Paraná Basin, Brazil, South America. Journal of South American Earth Sciences 29, 381–399.</p><p>Cagliari, J., Philipp, R.P., Buso, V.V., Netto, R.G., Hillebrand, P.K., Lopes, R.C.L., Basei, M.A.S., Faccini, U.F. (2016). Age constraints of the glaciation in the Paraná basin: Evidence from new U–Pb dates. Journal of the Geological Society 173, 871–874.</p><p>Griffis, N.P., Montañez, I.P., Mundil, R., Richey, J., Isbell, J., Fedorchuk, N., Linol, B., Iannuzzi, R., Vesely, F., Mottin, T., Rosa, E., Keller, B., Yin, Q. (2019). Coupled stratigraphic and U-Pb zircon age constraints on the late Paleozoic icehouse-to-greenhouse turnover in south-central Gondwana. Geology 47, 1146–1150.</p>


2016 ◽  
Author(s):  
Matthew G. Powell ◽  
◽  
Ian-Michael Taylor-Benjamin

2017 ◽  
Author(s):  
Kate M. Gigstad ◽  
◽  
Margaret L. Fraiser ◽  
John L. Isbell ◽  
Lydia T. Albright ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document