climatic forcing
Recently Published Documents


TOTAL DOCUMENTS

227
(FIVE YEARS 57)

H-INDEX

38
(FIVE YEARS 4)

2022 ◽  
Vol 277 ◽  
pp. 107299
Author(s):  
Shulan Ge ◽  
Zhihua Chen ◽  
Qingsong Liu ◽  
Li Wu ◽  
Yi Zhong ◽  
...  

CATENA ◽  
2022 ◽  
Vol 208 ◽  
pp. 105785
Author(s):  
Hanjing Fu ◽  
Xing Jian ◽  
Hanghai Liang ◽  
Wei Zhang ◽  
Xiaotian Shen ◽  
...  

2021 ◽  
Author(s):  
Yongmei Gong ◽  
Irina Rogozhina

Abstract. Western Norway hosts many glacierized drainage basins with complex terrain and local climate. These drainage basins face challenges related to long-term planning of hydropower production and flood risk mitigation under global warming. To enable forward vision of such efforts, bias-corrected outputs from state-of-the-art regional climate models and reanalysis provide climatic forcing for impact simulations. We utilize a distributed, process-based snow evolution model with a daily temporal and 100 m × 100 m spatial resolution to investigate the applicability of different bias-corrected climate forcing data for multidecadal reconstructions of glacier surface mass balance and surface runoff regimes in western Norway. These simulations are driven by climatic forcing from the bias-corrected NORA10 hindcast in 2000–2014, which has been produced specifically for western Norway and treated as a benchmark dataset, as well as ten bias-corrected and uncorrected CORDEX outputs under different Representative Concentration Pathway scenarios in 2000–2020. Downscaled drainage basin-wide air temperature, precipitation and glacier-wide surface mass balance are then validated against observations. The variables mentioned above produced by the benchmark simulation match available observations well. The mean annual surface mass balance of glaciers in most glacierized basins is negative in 2001–2014, and its evolution is mainly correlated with trends in annual snowfall. There is a general negative west to east gradient in seasonal and annual unit area runoff, which peaks between 2005 and 2008 in most drainage basins. Snow meltwater is the largest contributor to both seasonal and annual runoff in all drainage basins except for two of the westernmost ones. Drainage basins with denser glacier coverage turn out to have a later peak runoff discharge date. The correction applied to the CORDEX forcing reversed the cold bias in the original datasets, while the agreement between bias-corrected and observed precipitation rates varies strongly from basin to basin. As a result, simulations driven by bias-corrected CORDEX datasets produce lower annual surface mass balance in the most and least glacierized drainage basins, i.e., Basin 1 and 17, respectively. They all produce more unit area runoff in Basin 1 and less in Basin 17 both seasonally and annually, with only a few exceptions. We conclude that the identified errors will likely be inherited by the results of the future projections, casting doubts on the applicability of bias-corrected CORDEX forcing to directly drive local scale projections and the modeled outputs in developing climate change adaptation strategies.


2021 ◽  
Vol 9 ◽  
Author(s):  
Christoph Mayer ◽  
Carlo Licciulli

It can easily be expected that debris-covered glaciers show a different response on external forcing compared to clean-surface glaciers. The supra-glacial debris cover acts as an additional transfer layer for the energy exchange between atmosphere and ice. The related glacier reaction is the integral of local effects, which changes strongly between enhanced melt for thin debris layers and considerably reduced melt for thicker debris. Therefore, a realistic feedback study can only be performed, if both the ice flow and the debris-influenced melt is treated with a high degree of detail. We couple a full Stokes representation of ice dynamics and the most complete description of energy transfer through the debris layer, in order to describe the long-term glacier reaction in the coupled system. With this setup, we can show that steady-state conditions are highly unlikely for glaciers, in case debris is not unloaded from the surface. For continuous and complete debris removal from the lowermost glacier tongue, however, a balance of the debris budget and the glacier conditions are possible. Depending on displacement and removal processes, our results demonstrate that debris-covered glaciers have an inherent tendency to switch to an oscillating state. Then, glacier mass balance and debris balance are out of phase, such that glacier advance periods end with the separation of the heavily debris-loaded lowermost glacier tongue, at time scales of decades to centuries. As these oscillations are inherent and happen without any variations in climatic forcing, it is difficult to interpret modern observations on the fluctuation of debris-covered glaciers on the basis of a changing climate only.


2021 ◽  
Author(s):  
Jiamei Lin ◽  
Anders Svensson ◽  
Christine S. Hvidberg ◽  
Johannes Lohmann ◽  
Steffen Kristiansen ◽  
...  

Abstract. Large volcanic eruptions occurring in the last glacial period can be detected in terms of their deposited sulfuric acid in continuous ice cores. Here we employ continuous sulfate and sulfur records from three Greenland and three Antarctic ice cores to estimate the emission strength, the frequency and the climatic forcing of large volcanic eruptions that occurred during the second half of the last glacial period and the early Holocene, 60–9 ka years before AD 2000 (b2k). The ice cores are synchronized over most of the investigated interval making it possible to distinguish large eruptions with a global sulfate distribution from eruptions detectable in one hemisphere only. Due to limited data resolution and to a large variability in the sulfate background signal, particularly in the Greenland glacial climate, we only detect Greenland sulfate depositions larger than 20 kg km−2 and Antarctic sulfate depositions larger than 10 kg km−2. With those restrictions, we identify 1113 volcanic eruptions in Greenland and 740 eruptions in Antarctica within the 51 ka period – where the sulfate deposition of 85 eruptions is defined at both poles (bipolar eruptions). Based on the relative Greenland and Antarctic sulfate deposition, we estimate the latitudinal band of the bipolar eruptions and assess their approximate climatic forcing based on established methods. The climate forcing of the five largest eruptions is estimated to be higher than −70 W m−2. Twenty-seven of the identified bipolar eruptions are larger than any volcanic eruption occurring in the last 2500 years and 69 eruptions are estimated to have larger sulfur emission strengths than the VEI-7 Tambora eruption that occurred in Indonesia in 1815 AD. The frequency of eruptions larger than the typical VEI-7 (VEI-8) eruption by the comparison of sulfur emission strength is found to be 5.3 (7) times higher than estimated from geological evidence. Throughout the investigated period, the frequency of volcanic eruptions is rather constant and comparable to that of recent times. During the deglacial period (16–9 ka b2k), however, there is a notable increase in the frequency of volcanic events recorded in Greenland and an obvious increase in the fraction of very large eruptions. For Antarctica, the deglacial period cannot be distinguished from other periods. These volcanoes documented in ice cores provide atmospheric sulfate burden and climate forcing for further research on climate impact and understanding the mechanism of the Earth system.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ci-Jian Yang ◽  
Jens M. Turowski ◽  
Niels Hovius ◽  
Jiun-Chuan Lin ◽  
Kuo-Jen Chang

AbstractLandscapes form by the erosion and deposition of sediment, driven by tectonic and climatic forcing. The principal geomorphic processes of badland – landsliding, debris flow and runoff erosion – are similar to those in full scale mountain topography, but operate faster. Here, we show that in the badlands of SW Taiwan, individual rainfall events cause quantifiable landscape change, distinct for the type of rainfall. Typhoon rain reduced hillslope gradients, while lower-intensity precipitation either steepened or flattened the landscape, depending on its initial topography. The steep topography observed in our first survey is inconsistent with the effects of any of the rainfall events. We suggest that it is due to the 2016 Mw 6.4 Meinong earthquake. The observed pattern in the badlands was mirrored in the response of the Taiwan mountain topography to typhoon Morakot in 2009, confirming that badlands offer special opportunities to quantify natural landscape dynamics on observational time scales.


Author(s):  
Jing Yang ◽  
Junsheng Nie ◽  
Eduardo Garzanti ◽  
Mara Limonta ◽  
Sergio Andò ◽  
...  

Geology ◽  
2021 ◽  
Author(s):  
J.A. Smith ◽  
C.-D. Hillenbrand ◽  
C. Subt ◽  
B.E. Rosenheim ◽  
T. Frederichs ◽  
...  

Because ice shelves respond to climatic forcing over a range of time scales, from years to millennia, an understanding of their long-term history is critically needed for predicting their future evolution. We present the first detailed reconstruction of the Larsen C Ice Shelf (LCIS), eastern Antarctic Peninsula (AP), based on data from sediment cores recovered from below and in front of the ice shelf. Sedimentologic and chronologic information reveals that the grounding line (GL) of an expanded AP ice sheet had started its retreat from the midshelf prior to 17.7 ± 0.53 calibrated (cal.) kyr B.P., with the calving line following ~6 k.y. later. The GL had reached the inner shelf as early as 9.83 ± 0.85 cal. kyr B.P. Since ca. 7.3 ka, the ice shelf has undergone two phases of retreat but without collapse, indicating that the climatic limit of LCIS stability was not breached during the Holocene. Future collapse of the LCIS would therefore confirm that the magnitudes of both ice loss along the eastern AP and underlying climatic forcing are unprecedented during the past 11.5 k.y.


2021 ◽  
Vol 300 ◽  
pp. 108313
Author(s):  
Alex C. Ruane ◽  
Meridel Phillips ◽  
Christoph Müller ◽  
Joshua Elliott ◽  
Jonas Jägermeyr ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document