The GPM Operational Radiometer Algorithm - Changes for 2021

Author(s):  
Christian Kummerow ◽  
Paula Brown

<p>The Global Precipitation Measurement (GPM) mission was launched in February 2014 as a joint mission between JAXA from Japan and NASA from the United States.  GPM carries a state of the art dual-frequency precipitation radar and a multi-channel passive microwave radiometer that acts not only to enhance the radar’s retrieval capability, but also as a reference for a constellation of existing satellites carrying passive microwave sensors.  In May of 2017, GPM released Version 5 of its precipitation products starting with GMI and continuing with the constellation of radiometers.  The precipitation products from these sensors are consistent by design and show relatively minor differences in the mean global sense.  Since this release, the Combined Algorithm hydrometeor profiles have shown good consistency with surface observations and computed brightness temperatures agree reasonably well with GMI observations in precipitating regions.  The same is true for MIRS profiles in non-precipitating regions.  Version 7 of the GPROF code will therefore make use of these operational products to construct it's a-priori databases.  This will allow continuous improvements in the a-priori database as these operational products are reprocessed with newer versions, while allowing the user community to better focus on the algorithm’s error covariance matrix and its validation.  Results from early versions of this algorithm will be presented.  In addition to creating an a-priori database that can be more directly updated with improvement to the raining and non-raining scenes, GPROF is also undertaking steps to improve the orographic representation of snow and a Neural Network based Convective/Stratiform classification of precipitation that will both help improve instantaneous correlations with in-situ observations.</p>

2018 ◽  
Vol 19 (3) ◽  
pp. 517-532 ◽  
Author(s):  
Jackson Tan ◽  
Walter A. Petersen ◽  
Gottfried Kirchengast ◽  
David C. Goodrich ◽  
David B. Wolff

Abstract Precipitation profiles from the Global Precipitation Measurement (GPM) Core Observatory Dual-Frequency Precipitation Radar (DPR; Ku and Ka bands) form part of the a priori database used in the Goddard profiling algorithm (GPROF) for retrievals of precipitation from passive microwave sensors, which are in turn used as high-quality precipitation estimates in gridded products. As GPROF performs precipitation retrievals as a function of surface classes, error characteristics may be dependent on surface types. In this study, the authors evaluate the rainfall estimates from DPR Ku as well as GPROF estimates from passive microwave sensors in the GPM constellation. The evaluation is conducted at the level of individual satellite pixels (5–15 km) against three dense networks of rain gauges, located over contrasting land surface types and rainfall regimes, with multiple gauges per satellite pixel and precise accumulation about overpass time to ensure a representative comparison. As expected, it was found that the active retrievals from DPR Ku generally performed better than the passive retrievals from GPROF. However, both retrievals struggle under coastal and semiarid environments. In particular, virga appears to be a serious challenge for both DPR Ku and GPROF. The authors detected the existence of lag due to the time it takes for satellite-observed precipitation to reach the ground, but the precise delay is difficult to quantify. It was also shown that subpixel variability is a contributor to the errors in GPROF. These results can pinpoint deficiencies in precipitation algorithms that may propagate into widely used gridded products.


2020 ◽  
Vol 59 (7) ◽  
pp. 1195-1215
Author(s):  
Ruiyao Chen ◽  
Ralf Bennartz

AbstractThe sensitivity of microwave brightness temperatures (TBs) to hydrometeors at frequencies between 89 and 190 GHz is investigated by comparing Fengyun-3C (FY-3C) Microwave Humidity Sounder-2 (MWHS-2) measurements with radar reflectivity profiles and retrieved products from the Global Precipitation Measurement mission’s Dual-Frequency Precipitation Radar (DPR). Scattering-induced TB depressions (ΔTBs), calculated by subtracting simulated cloud-free TBs from bias-corrected observed TBs for each channel, are compared with DPR-retrieved hydrometeor water path (HWP) and vertically integrated radar reflectivity ZINT. We also account for the number of hydrometeors actually visible in each MWHS-2 channel by weighting HWP with the channel’s cloud-free gas transmission profile and the observation slant path. We denote these transmission-weighted, slant-path-integrated quantities with a superscript asterisk (e.g., HWP*). The so-derived linear sensitivity of ΔTB with respect to HWP* increases with frequency roughly to the power of 1.78. A retrieved HWP* of 1 kg m−2 at 89 GHz on average corresponds to a decrease in observed TB, relative to a cloud-free background, of 11 K. At 183 GHz, the decrease is about 34–53 K. We perform a similar analysis using the vertically integrated, transmission-weighted slant-path radar reflectivity and find that ΔTB also decreases approximately linearly with . The exponent of 0.58 corresponds to the one we find in the purely DPR-retrieval-based ZINT–HWP relation. The observed sensitivities of ΔTB with respect to and HWP* allow for the validation of hydrometeor scattering models.


2017 ◽  
Vol 98 (8) ◽  
pp. 1679-1695 ◽  
Author(s):  
Gail Skofronick-Jackson ◽  
Walter A. Petersen ◽  
Wesley Berg ◽  
Chris Kidd ◽  
Erich F. Stocker ◽  
...  

Abstract Precipitation is a key source of freshwater; therefore, observing global patterns of precipitation and its intensity is important for science, society, and understanding our planet in a changing climate. In 2014, the National Aeronautics and Space Administration (NASA) and the Japan Aerospace Exploration Agency (JAXA) launched the Global Precipitation Measurement (GPM) Core Observatory (CO) spacecraft. The GPM CO carries the most advanced precipitation sensors currently in space including a dual-frequency precipitation radar provided by JAXA for measuring the three-dimensional structures of precipitation and a well-calibrated, multifrequency passive microwave radiometer that provides wide-swath precipitation data. The GPM CO was designed to measure rain rates from 0.2 to 110.0 mm h−1 and to detect moderate to intense snow events. The GPM CO serves as a reference for unifying the data from a constellation of partner satellites to provide next-generation, merged precipitation estimates globally and with high spatial and temporal resolutions. Through improved measurements of rain and snow, precipitation data from GPM provides new information such as details on precipitation structure and intensity; observations of hurricanes and typhoons as they transition from the tropics to the midlatitudes; data to advance near-real-time hazard assessment for floods, landslides, and droughts; inputs to improve weather and climate models; and insights into agricultural productivity, famine, and public health. Since launch, GPM teams have calibrated satellite instruments, refined precipitation retrieval algorithms, expanded science investigations, and processed and disseminated precipitation data for a range of applications. The current status of GPM, its ongoing science, and its future plans are presented.


2016 ◽  
Vol 33 (10) ◽  
pp. 2225-2245 ◽  
Author(s):  
Mircea Grecu ◽  
William S. Olson ◽  
Stephen Joseph Munchak ◽  
Sarah Ringerud ◽  
Liang Liao ◽  
...  

AbstractIn this paper, the operational Global Precipitation Measurement (GPM) mission combined radar–radiometer algorithm is thoroughly described. The operational combined algorithm is designed to reduce uncertainties in GPM Core Observatory precipitation estimates by effectively integrating complementary information from the GPM Dual-Frequency Precipitation Radar (DPR) and the GPM Microwave Imager (GMI) into an optimal, physically consistent precipitation product. Although similar in many respects to previously developed combined algorithms, the GPM combined algorithm has several unique features that are specifically designed to meet the GPM objectives of deriving, based on GPM Core Observatory information, accurate and physically consistent precipitation estimates from multiple spaceborne instruments, and ancillary environmental data from reanalyses. The algorithm features an optimal estimation framework based on a statistical formulation of the Gauss–Newton method, a parameterization for the nonuniform distribution of precipitation within the radar fields of view, a methodology to detect and account for multiple scattering in Ka-band DPR observations, and a statistical deconvolution technique that allows for an efficient sequential incorporation of radiometer information into DPR precipitation retrievals.


2013 ◽  
Vol 51 (3) ◽  
pp. 1465-1477 ◽  
Author(s):  
Sayak K. Biswas ◽  
Spencer Farrar ◽  
Kaushik Gopalan ◽  
Andrea Santos-Garcia ◽  
W. Linwood Jones ◽  
...  

2016 ◽  
Vol 33 (12) ◽  
pp. 2639-2654 ◽  
Author(s):  
Wesley Berg ◽  
Stephen Bilanow ◽  
Ruiyao Chen ◽  
Saswati Datta ◽  
David Draper ◽  
...  

AbstractThe Global Precipitation Measurement (GPM) mission is a constellation-based satellite mission designed to unify and advance precipitation measurements using both research and operational microwave sensors. This requires consistency in the input brightness temperatures (Tb), which is accomplished by intercalibrating the constellation radiometers using the GPM Microwave Imager (GMI) as the calibration reference. The first step in intercalibrating the sensors involves prescreening the sensor Tb to identify and correct for calibration biases across the scan or along the orbit path. Next, multiple techniques developed by teams within the GPM Intersatellite Calibration Working Group (XCAL) are used to adjust the calibrations of the constellation radiometers to be consistent with GMI. Comparing results from multiple approaches helps identify flaws or limitations of a given technique, increase confidence in the results, and provide a measure of the residual uncertainty. The original calibration differences relative to GMI are generally within 2–3 K for channels below 92 GHz, although AMSR2 exhibits larger differences that vary with scene temperature. SSMIS calibration differences also vary with scene temperature but to a lesser degree. For SSMIS channels above 150 GHz, the differences are generally within ~2 K with the exception of SSMIS on board DMSP F19, which ranges from 7 to 11 K colder than GMI depending on frequency. The calibrations of the cross-track radiometers agree very well with GMI with values mostly within 0.5 K for the Sondeur Atmosphérique du Profil d’Humidité Intertropicale par Radiométrie (SAPHIR) and the Microwave Humidity Sounder (MHS) sensors, and within 1 K for the Advanced Technology Microwave Sounder (ATMS).


2016 ◽  
Vol 33 (8) ◽  
pp. 1649-1671 ◽  
Author(s):  
Eun-Kyoung Seo ◽  
Sung-Dae Yang ◽  
Mircea Grecu ◽  
Geun-Hyeok Ryu ◽  
Guosheng Liu ◽  
...  

AbstractUsing Tropical Rainfall Measuring Mission (TRMM) observations from storms collected over the oceans surrounding East Asia, during summer, a method of creating physically consistent cloud-radiation databases to support satellite radiometer retrievals is introduced. In this method, vertical profiles of numerical model-simulated cloud and precipitation fields are optimized against TRMM radar and radiometer observations using a hybrid empirical orthogonal function (EOF)–one-dimensional variational (1DVAR) approach.The optimization is based on comparing simulated to observed radar reflectivity profiles and the corresponding passive microwave observations at the frequencies of the TRMM Microwave Imager (TMI) instrument. To minimize the discrepancies between the actual and the synthetic observations, the simulated cloud and precipitation profiles are optimized by adjusting the contents of the hydrometeors. To reduce the dimension of the hydrometeor content profiles in the optimization, multivariate relations among hydrometeor species are used.After applying the optimization method to modify the simulated clouds, the optimized cloud-radiation database has a joint distribution of reflectivity and associated brightness temperatures that is considerably closer to that observed by TRMM PR and TMI, especially at 85 GHz. This implies that the EOF–1DVAR approach can generate profiles with realistic distributions of frozen hydrometeors, such as snow and graupel. This approach may be similarly adapted to operate with the variety and capabilities of the passive microwave radiometers that compose the Global Precipitation Measurement (GPM) constellation. Furthermore, it can be extended to other oceanic regions and seasons.


2005 ◽  
Vol 22 (7) ◽  
pp. 909-929 ◽  
Author(s):  
Hirohiko Masunaga ◽  
Christian D. Kummerow

Abstract A methodology to analyze precipitation profiles using the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) and precipitation radar (PR) is proposed. Rainfall profiles are retrieved from PR measurements, defined as the best-fit solution selected from precalculated profiles by cloud-resolving models (CRMs), under explicitly defined assumptions of drop size distribution (DSD) and ice hydrometeor models. The PR path-integrated attenuation (PIA), where available, is further used to adjust DSD in a manner that is similar to the PR operational algorithm. Combined with the TMI-retrieved nonraining geophysical parameters, the three-dimensional structure of the geophysical parameters is obtained across the satellite-observed domains. Microwave brightness temperatures are then computed for a comparison with TMI observations to examine if the radar-retrieved rainfall is consistent in the radiometric measurement space. The inconsistency in microwave brightness temperatures is reduced by iterating the retrieval procedure with updated assumptions of the DSD and ice-density models. The proposed methodology is expected to refine the a priori rain profile database and error models for use by parametric passive microwave algorithms, aimed at the Global Precipitation Measurement (GPM) mission, as well as a future TRMM algorithms.


Sign in / Sign up

Export Citation Format

Share Document