microwave humidity sounder
Recently Published Documents


TOTAL DOCUMENTS

50
(FIVE YEARS 18)

H-INDEX

9
(FIVE YEARS 1)

2021 ◽  
Vol 13 (22) ◽  
pp. 4556
Author(s):  
Dongmei Xu ◽  
Xuewei Zhang ◽  
Hong Li ◽  
Haiying Wu ◽  
Feifei Shen ◽  
...  

In this study, the case of super typhoon Lekima, which landed in Jiangsu and Zhejiang Province on 4 August 2019, is numerically simulated. Based on the Weather Research and Forecasting (WRF) model, the sensitivity experiments are carried out with different combinations of physical parameterization schemes. The results show that microphysical schemes have obvious impacts on the simulation of the typhoon’s track, while the intensity of the simulated typhoon is more sensitive to surface physical schemes. Based on the results of the typhoon’s track and intensity simulation, one parameterization scheme was further selected to provide the background field for the following data assimilation experiments. Using the three-dimensional variational (3DVar) data assimilation method, the Microwave Humidity Sounder-2 (MWHS-2) radiance data onboard the Fengyun-3D satellite (FY-3D) were assimilated for this case. It was found that the assimilation of the FY-3D MWHS-2 radiance data was able to optimize the initial field of the numerical model in terms of the model variables, especially for the humidity. Finally, by the inspection of the typhoon’s track and intensity forecast, it was found that the assimilation of FY-3D MWHS-2 radiance data improved the skill of the prediction for both the typhoon’s track and intensity.


2021 ◽  
Vol 13 (15) ◽  
pp. 2873
Author(s):  
Dongmei Xu ◽  
Aiqing Shu ◽  
Hong Li ◽  
Feifei Shen ◽  
Qiang Li ◽  
...  

A new advanced microwave humidity sounder FY-3D MWHS2 radiance has been assimilated under the clear-sky conditions by implementing its data assimilation interface. The case of the tropical storm Ampil in 2018 is selected to address the effectiveness of the new-built module in the initialization and forecast of typhoons. Apart from the experiment assimilating both the Global Telecommunications System (GTS) data and the FY-3D MWHS2 radiance data, an experiment with only GTS data is also conducted for comparison. The results show that the bias correction of this humidity sounder is effective, and the analysis field after assimilating its radiance data matches well with the observation. The increment of specific humidity below the middle layers is evident after the assimilation of the radiance data. Besides, the geopotential height increment and the specific humidity increment at 500 hPa and 850 hPa, respectively, are favorable, resulting in more accurate rain belt distribution and a higher fraction skill score (FSS). In the deterministic forecast, the track error of the FY-3D MWHS2 experiment is consistently less than 90 km.


2021 ◽  
Vol 14 (4) ◽  
pp. 2957-2979
Author(s):  
Inderpreet Kaur ◽  
Patrick Eriksson ◽  
Simon Pfreundschuh ◽  
David Ian Duncan

Abstract. A methodology based on quantile regression neural networks (QRNNs) is presented that identifies and corrects the cloud impact on microwave humidity sounder radiances at 183 GHz. This approach estimates the posterior distributions of noise-free clear-sky (NFCS) radiances, providing nearly bias-free estimates of clear-sky radiances with a full posterior error distribution. It is first demonstrated by application to a present sensor, the MicroWave Humidity Sounder 2 (MWHS-2); then the applicability to sub-millimetre (sub-mm) sensors is also analysed. The QRNN results improve upon what operational cloud filtering techniques like a scattering index can achieve but are ultimately imperfect due to limited information content on cirrus impact from traditional microwave channels – the negative departures associated with high cloud impact are successfully corrected, but thin cirrus clouds cannot be fully corrected. In contrast, when sub-mm observations are used, QRNN successfully corrects most cases with cloud impact, with only 2 %–6 % of the cases left partially corrected. The methodology works well even if only one sub-mm channel (325 GHz) is available. When using sub-mm observations, cloud correction usually results in error distributions with a standard deviation less than typical channel noise values. Furthermore, QRNN outputs predicted quantiles for case-specific uncertainty estimates, successfully representing the uncertainty of cloud correction for each observation individually. In comparison to deterministic correction or filtering approaches, the corrected radiances and attendant uncertainty estimates have great potential to be used efficiently in assimilation systems due to being largely unbiased and adding little further uncertainty to the measurements.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Keyi Chen ◽  
Jiao Fan ◽  
Zhipeng Xian

The dynamic emissivity retrieved from window channels of the microwave humidity sounder II (MWHS-2) onboard the China Meteorological Administration’s FengYun (FY)-3C polar orbiting satellite can provide more realistic emissivity over lands and potentially improve the numerical weather prediction (NWP) forecasts. However, whether the assimilation with the dynamic emissivity works for the precipitation forecasts over the complex geography is less investigated. In this paper, a typical precipitating case generated by the Southwest Vortex is selected and the Weather Research and Forecasting data assimilation (WRFDA) system is applied to examine the impacts of assimilating MWHS-2/FY-3C with the uses of the emissivity atlas and the dynamic emissivity on the forecasts. The results indicate that the use of the dynamic emissivity retrieved from the 89 GHz channel of MWHS-2/FY-3C apparently increases the used data number for assimilation and does improve the initial fields and the 24-hour forecasts (from 0000 UTC 24 June 2016 to 0000 UTC 25 June 2016) of precipitation distribution and intensity except for the rainfall over 100 mm. But these positive impacts are not evidently better than those with the emissivity atlas. In general, these results still suggest that the future use of the dynamic emissivity in the assimilation over the complex terrain is promising.


Author(s):  
John Xun Yang ◽  
Yalei You ◽  
William Blackwell ◽  
Sidharth Misra ◽  
Rachael A. Kroodsma

2020 ◽  
Author(s):  
Inderpreet Kaur ◽  
Patrick Eriksson ◽  
Simon Pfreundschuh ◽  
David Ian Duncan

Abstract. A methodology based on quantile regression neural networks (QRNN) is presented that identifies and corrects the cloud impact on microwave humidity sounder radiances at 183 GHz. This approach estimates the posterior distributions of noise free clear-sky (NFCS) radiances, providing nearly bias-free estimates of clear-sky radiances with a full posterior error distribution. It is first demonstrated by application to a present sensor, the MicroWave Humidity Sounder-2 (MWHS-2), then the applicability to sub-millimeter (sub-mm) sensors is also analysed. The QRNN results improve upon what operational cloud filtering techniques like a scattering index can achieve, but are ultimately imperfect due to limited information content on cirrus impact from traditional microwave channels – the negative departures associated with high cloud impact are successfully corrected, but thin cirrus clouds cannot be fully corrected. In contrast, when sub-mm observations are used, QRNN successfully corrects most cases with cloud impact, with only 2–6 % of the cases left partially corrected. The methodology works well even if only one sub-mm channel (325 GHz) is available. When using sub-mm observations, cloud correction usually results in error distributions with standard deviation less than typical channel noise values. Furthermore, QRNN outputs predicted quantiles for case-specific uncertainty estimates, successfully representing the uncertainty of cloud correction for each observation individually. In comparison to deterministic correction or filtering approaches, the corrected radiances and attendant uncertainty estimates have great potential to be used efficiently in assimilation systems due to being largely unbiased and adding little further uncertainty to the measurements.


2020 ◽  
Vol 12 (22) ◽  
pp. 3842
Author(s):  
Zhengkun Qin ◽  
Zhiwen Wu ◽  
Juan Li

Clouds affect the assimilation of microwave data from satellites and therefore the detection of clouds is important under both clear sky and cloudy conditions. We introduce a new cloud detection method based on the assimilation of data from the advanced microwave sounder unit A (AMSU-A) and the microwave humidity sounder (MHS) into the global and regional assimilation and prediction system (GRAPES) and use forecast experiments to evaluate its impact. The new cloud detection method can retain more observational data than the current method in GRAPES, thereby improving the assimilation of AMSU-A data. Verification of the method showed that, by improving the forecast of the lower-level air temperature and geopotential height, the new cloud detection method improved the forecast of the track of two typhoons. The forecast of a large-scale weather system in GRAPES was also improved by the new method in the later period of the forecast.


2020 ◽  
Vol 17 (11) ◽  
pp. 1846-1850 ◽  
Author(s):  
Yang Guo ◽  
Jieying He ◽  
Songyan Gu ◽  
Naimeng Lu

Sign in / Sign up

Export Citation Format

Share Document