Multiplet Based Time Lapse Velocity Changes Prior to the 2018 Eruption of Sierra Negra Volcano, Galapagos Island Observed with Coda Wave Interferometry

Author(s):  
Mariantonietta Longobardi ◽  
James Grannel ◽  
Christopher Bean ◽  
Andrew Bell ◽  
Mario Ruiz

<p align="justify"><span>Changes in external stress state and fluid content alter the mechanical properties of an geological media. </span><span>Variations in seismic wave velocity can be used as proxies for changes in stress the onset of mechanical demage and/or possible fluid ingression. Temporal variations in seismic wave velocity have previously been monitored and observed prior to volcanic eruptions. In the absence of additional constraints related to stress or fluid changes on the volcano, these pre-eruptive changes are difficult to interpret and hence the causes of them are often not well understood. </span><span>In this study, Coda Wave Interferometry (CWI) is used to measure time-lapse changes in seismic velocity on seismic multiplets (repeating similar earthquakes). In particular, we focus our analysis on using this technique to calculate the velocity changes on the data recorded prior to the 2018 eruption of Sierra Negra volcano, Galapagos Island.</span> <span>On 26th June 2018 at 09:15 UTC, a magnitude 5.3 earthquake occurred near the south-west caldera rim and an intense seismic swarm started around 17:15 UTC. Seismic tremor dominated at about 19:45 UTC, which marked the onset of the eruption. </span><span>A very large seismicity sequence preceded the eruption. The pricise relationship between the magnitude 5.3 event and the eruption is not fully constraind. Here we search for multiplets in order to achieve high time resolution velocity change information in the hours between the large earthquake and the eruption. </span><span>Our aim is to understand whether changes in seismic velocity measured with CWI on multiplets method provide new insight into the physical processes related to the eruption.</span></p><p align="justify"><br><br></p>

2020 ◽  
Vol 221 (3) ◽  
pp. 1719-1735
Author(s):  
Antoine Guillemot ◽  
Agnès Helmstetter ◽  
Éric Larose ◽  
Laurent Baillet ◽  
Stéphane Garambois ◽  
...  

SUMMARY A network of seismometers has been installed on the Gugla rock glacier since October 2015 to estimate seismic velocity changes and detect microseismicity. These two processes are related to mechanical and structural variations occurring within the rock glacier. Seismic monitoring thus allows a better understanding of the dynamics of rock glaciers throughout the year. We observed seasonal variations in seismic wave velocity and microseismic activity over the 3 yr of the study. In the first part of our analysis, we used ambient noise correlations to compute daily changes of surface wave velocity. In winter, seismic wave velocities were higher, probably due to refreezing of the permafrost active layer and cooling of the uppermost permafrost layers, leading to increased overall rigidity of the medium. This assumption was verified using a seismic model of wave propagation that estimates the depth of P- and S-wave velocity changes from 0 down to 10 m. During melting periods, both a sudden velocity decrease and a decorrelation of the seismic responses were observed. These effects can probably be explained by the increased water content of the active layer. In the second part of our study, we focused on detecting microseismic signals generated in and around the rock glacier. This seismic activity (microquakes and rockfalls) also exhibits seasonal variations, with a maximum in spring and summer, which correlates principally with an exacerbated post-winter erosional phase of the front and a faster rock glacier displacement rate. In addition, we observed short bursts of microseismicity, both during snowfall and during rapid melting periods, probably due to pore pressure increase.


2001 ◽  
Vol 28 (19) ◽  
pp. 3737-3740 ◽  
Author(s):  
Muneyoshi Furumoto ◽  
Yuko Ichimori ◽  
Nobuhiko Hayashi ◽  
Yoshihiro Hiramatsu ◽  
Takashi Satoh

First Break ◽  
2017 ◽  
Vol 35 (8) ◽  
Author(s):  
Atsushi Suzaki ◽  
Shohei Minato ◽  
Ranajit Ghose ◽  
Chisato Konishi ◽  
Naoki Sakai

2021 ◽  
pp. M56-2020-19
Author(s):  
E. R. Ivins ◽  
W. van der Wal ◽  
D. A. Wiens ◽  
A. J. Lloyd ◽  
L. Caron

AbstractThe Antarctic mantle and lithosphere are known to have large lateral contrasts in seismic velocity and tectonic history. These contrasts suggest differences in the response time scale of mantle flow across the continent, similar to those documented between the northeastern and southwestern upper mantle of North America. Glacial isostatic adjustment and geodynamical modeling rely on independent estimates of lateral variability in effective viscosity. Recent improvements in imaging techniques and the distribution of seismic stations now allow resolution of both lateral and vertical variability of seismic velocity, making detailed inferences about lateral viscosity variations possible. Geodetic and paleo sea-level investigations of Antarctica provide quantitative ways of independently assessing the three-dimensional mantle viscosity structure. While observational and causal connections between inferred lateral viscosity variability and seismic velocity changes are qualitatively reconciled, significant improvements in the quantitative relations between effective viscosity anomalies and those imaged by P- and S-wave tomography have remained elusive. Here we describe several methods for estimating effective viscosity from S-wave velocity. We then present and compare maps of the viscosity variability beneath Antarctica based on the recent S-wave velocity model ANT-20 using three different approaches.


Sign in / Sign up

Export Citation Format

Share Document