An independent solution for the precise orbit determination of Mercury planetary orbiter (MPO)

Author(s):  
Alireza HosseiniArani ◽  
Stefano Bertone ◽  
Daniel Arnold ◽  
Adrian Jäggi ◽  
Nicolas Thomas

<p>Navigation of deep space probes is most commonly operated using the spacecraft Doppler<br>tracking technique. Orbital parameters are determined from a series of repeated measurements of the frequency shift of a microwave carrier over a given integration time. This study addresses the work that is done on Doppler orbit determination of MPO - one of the two spacecraft of the European Space Agency’s BepiColombo mission- using Bernese software.</p><p>For modelling the orbit of MPO around Mercury, we use a full force model, including Mercury gravity field GGMES-100V07 (up to degree and order 50), solid tides and third body perturbations. We also have an extensive modelling of non-gravitational forces that act on the orbit of spacecraft. This modelling includes the solar radiation pressure and planetary IR and albedo radiation together with a 33-plates macromodel of MPO. We propagate the orbit using this force model. Our simulations of Doppler tracking measurements include 2-way X-band and K-band Doppler measurements, station and planetary eclipses and the relativistic corrections. </p><p>The imperfect knowledge of the non-gravitational forces due to the proximity of Mercury to the Sun, together with the effect of desaturation maneuvers uncertainties, makes the use of the accelerometer necessary. Therefore, in our modelling of the orbit recovery, the models for the non-conservative forces were replaced by the noisy simulated accelerometer measurements. We find out that the modelling of the accelerometer noise has a huge impact on the results of the POD.</p><p>We perform several orbit reconstruction tests using daily arcs with noise modulated Doppler data with different settings on the arc lengths, arcs initial conditions, dynamical model, observation mode and orbit determination process and we solve for the initial state vector of each arc. We also run sensitivity analysis with respect to the different accelerometer model. The final goal of this study is to provide an independent solution for the precise orbit determination of Mercury planetary orbiter (MPO) using the planetary extension of the Bernese GNSS software. We present out latest results and then compare our results with the existing ones from the MORE team.</p>

2002 ◽  
Vol 30 (2) ◽  
pp. 281-287 ◽  
Author(s):  
I. Romero ◽  
C. Garcia ◽  
R. Kahle ◽  
J. Dow ◽  
T. Martin-Mur

2021 ◽  
Vol 13 (15) ◽  
pp. 3033
Author(s):  
Hui Wei ◽  
Jiancheng Li ◽  
Xinyu Xu ◽  
Shoujian Zhang ◽  
Kaifa Kuang

In this paper, we propose a new reduced-dynamic (RD) method by introducing the second-order time-difference position (STP) as additional pseudo-observations (named the RD_STP method) for the precise orbit determination (POD) of low Earth orbiters (LEOs) from GPS observations. Theoretical and numerical analyses show that the accuracies of integrating the STPs of LEOs at 30 s intervals are better than 0.01 m when the forces (<10−5 ms−2) acting on the LEOs are ignored. Therefore, only using the Earth’s gravity model is good enough for the proposed RD_STP method. All unmodeled dynamic models (e.g., luni-solar gravitation, tide forces) are treated as the error sources of the STP pseudo-observation. In addition, there are no pseudo-stochastic orbit parameters to be estimated in the RD_STP method. Finally, we use the RD_STP method to process 15 days of GPS data from the GOCE mission. The results show that the accuracy of the RD_STP solution is more accurate and smoother than the kinematic solution in nearly polar and equatorial regions, and consistent with the RD solution. The 3D RMS of the differences between the RD_STP and RD solutions is 1.93 cm for 1 s sampling. This indicates that the proposed method has a performance comparable to the RD method, and could be an alternative for the POD of LEOs.


2018 ◽  
Vol 56 (6) ◽  
pp. 3148-3158 ◽  
Author(s):  
Sergei Rudenko ◽  
Mathis BloBfeld ◽  
Horst Muller ◽  
Denise Dettmering ◽  
Detlef Angermann ◽  
...  

2017 ◽  
Vol 9 (8) ◽  
pp. 810 ◽  
Author(s):  
Ming Chen ◽  
Yang Liu ◽  
Jiming Guo ◽  
Weiwei Song ◽  
Peng Zhang ◽  
...  

2009 ◽  
Vol 26 (2) ◽  
pp. 229-236 ◽  
Author(s):  
Yoo-La Hwang ◽  
Byoung-Sun Lee ◽  
Jae-Hoon Kim ◽  
Jae-Cheol Yoon

Sign in / Sign up

Export Citation Format

Share Document