scholarly journals Assessment of the mechanism of fracture propagation of soft rock coastal cliffs by using non-local constitutive models

Author(s):  
Piernicola Lollino ◽  
Nunzio Luciano Fazio ◽  
Michele Perrotti ◽  
Alessio Genco ◽  
Gaetano Elia ◽  
...  

<p>The assessment of susceptibility to failure of soft rock coastal cliffs, along with the associated failure mechanism, is not a simple task. Equilibrium conditions depend on the combination of several factors such as structural setting, rock mechanical strength, weathering processes, the hydro-mechanical action of sea waves, the variation of the rock cliff geometry, to mention some of the most important ones. From a geomechanical perspective, the brittle - strain softening behaviour of the rocks plays a key role in the onset and propagation of failure (Ciantia & Castellanza 2015). In particular, the rapid strength reduction occurring after peak under mechanical loading leading to localised deformations within shear fractures is detrimental for rock cliffs. Taking rock brittleness into account in numerical simulations under the framework of continuum mechanics is not straightforward, due to the problems related to a strong dependence of the numerical results from the adopted mesh when strain-softening laws are implemented (Vermeer and Brinkgreve 1994). Nowadays, several regularization techniques are available to control the size of the localised region and prevent the mesh dependence. Within regularization techniques, the nonlocal integral type solution has the advantage of not changing the field equations which facilitates numerical implementation. In this approach, the chosen nonlocal variables are valuated from spatial averages of the field variables in a neighbourhood, and the constitutive model is updated by replacing a local variable with its nonlocal counterpart. Consequently, the constitutive response of a Gauss point is influenced by all the integration points within a neighbourhood, with the size determined through a characteristic length (Bažant and Jirásek 2002). This contribution addresses the problem of the stability of an ideal 2-D plane strain coastal cliff, 20-m high, by means of the use of a non-local constitutive model implemented in a commercial finite element code (Mánica et al. 2018). The numerical results show insights into the evolution of the strain field and the process of slip surface/fracture propagation in the rock cliff as well as highlight the importance of regularising the finite element solution in the presence of brittle materials.</p>

2013 ◽  
Vol 446-447 ◽  
pp. 284-287
Author(s):  
K.J. Song ◽  
Y.H. Wei ◽  
Z.B. Dong ◽  
K. Fang ◽  
W.J. Zheng ◽  
...  

This paper has established a viscoelasticplastic constitutive model for A7N01T6 alloy welding, which is temperature and deformation history dependent. The model uses elasticmixed hardening plastic and creep equation to describe the strain hardening at low temperatures and strain softening at high temperatures, respectively. Then it is applied for finite element numerical simulation of the welding process. By comparison with the conventional temperature dependent elasticperfectly plastic model, the overall longitudinal residual compressive plastic strain and the maximum deformation of welding sheet are larger. This is because that the plastic strain is mostly produced in high temperature range. Strain softening has great influence on the evolution of plastic strain. The compressive plastic strain during heating is larger than the tensile plastic strain during cooling. Strain hardening effect on welding residual strain and stress is almost negligible. Using the established constitutive model, welding residual stress and strain are in good agreement with the theoretical results.


2011 ◽  
Vol 250-253 ◽  
pp. 1932-1935
Author(s):  
Song Li ◽  
Hong Jian Liao ◽  
Hang Zhou Li

This paper aims to study the strain softening behavior of soft rock. A modified equation of unified strength theory is proposed that is convenient to be applied in geotechnical engineering where compression is customarily taken as positive. And also the limit line on deviatoric plane of this modified equation is derived and introduced into the three dimensional (3D) elastic viscoplastic constitutive model of Yin and Graham. Parameters of the model are determined from experiments of the diatom soft rock specimens. Numerical simulations are performed to compare the strain softening behavior predicted in this paper and triaxial experimental results. Simulation results show that the proposed model can accurately describe the strain softening of soft rock.


2008 ◽  
Vol 22 (31n32) ◽  
pp. 5375-5380 ◽  
Author(s):  
LI SONG ◽  
CHONGDU CHO ◽  
SHENG LU ◽  
HONGJIAN LIAO

This study attempts to modify the unified strength theory by considering compression as a positive load in geotechnical engineering. It also aims to establish a unified elastoplastic strain softening constitutive model which can accurately describe the strain softening behavior of one kind of soft rocks distributed in Japan. The hardening function parameters of the unified elastoplastic strain softening constitutive model are determined from experiments. In addition, numerical simulations of this model are performed to compare the pre-peak, post-peak and the residual strengths of soft rock predicted by this study and experimental results. Simulation results demonstrated that the proposed constitutive equations in strain space can well describe the softening behavior and accurately predict the peak and residual strengths of soft rock. While the proposed equation is applicative for normally consolidated state and overconsolidated state according to the simulation results.


Sign in / Sign up

Export Citation Format

Share Document