Reconstructing floods in small-medium scale data-scarce catchments using field interview data and hydrodynamic modelling

Author(s):  
Mark Bawa Malgwi ◽  
Jorge Alberto Ramirez ◽  
Andreas Zischg ◽  
Markus Zimmermann ◽  
Stefan Schürmann ◽  
...  

<p>We develop a technique for reconstructing floods in small-scale data scarce regions using field interview data and hydro-dynamic modelling. The field interview data consist of flood depths and duration data collected from 300 buildings from a flood event in 2017 in Suleja/Tafa area, Nigeria. The flood event resulted from an overflow of water from five river reaches. The hydrodynamic model utilized, called CAESER LisFLOOD, is an integration of a landscape evolution model (CAESER) and a hydraulic model (LisFLOOD-FP). We employ three steps to reconstruct the 2017 Suleja/Tafa flood event. Firstly, we use a linearly increasing hydrograph to; (a) calibrate Manning’s coefficient and (b) determine optimal peak discharge on each reach. This was carried out by minimizing the Root Mean Square Error (RMSE) between the distributed observed flood depths and the simulated flood depths. Secondly, we use synthetic hydrographs with durations between 6, 12, 18, 20, 24 hours, having peak discharge (extracted from the previous step), to simulate flows on all upstream reaches. Using collected flood duration data, we minimized RMSE between distributed observed flood duration and simulated flood duration to determine optimal flow durations on each upstream reach. In the last step, utilizing peak discharge and flow duration for all upstream reaches, we carried out multiple spatial and temporal iterations to match downstream peak discharge. Thereafter, we use determined upstream hydrographs with their relative catchment response timing to simulate the entire river network. Minimum RMSE computed for the entire river network was between ±15 cm of many current studies that use distributed observed data to calibrate flood models. The method developed in this study is useful for simulating floods in regions where data such as high resolution DEMs, river bathymetry and river discharge are limited. In addition, the study extends current knowledge, on utilizing distributed flood data to determine peak discharge, from a single to multiple river networks.</p>

2021 ◽  
Author(s):  
Radheesh Dhanasegaran ◽  
Antti Uusitalo ◽  
Teemu Turunen-Saaresti

2019 ◽  
Author(s):  
Yangzi Qiu ◽  
Abdellah Ichiba ◽  
Igor Da Silva Rocha Paz ◽  
Feihu Chen ◽  
Pierre-Antoine Versini ◽  
...  

Abstract. Currently, Low Impact Development (LID) and Nature-Based Solutions (NBS) are widely accepted as sustainable approaches for urban stormwater management. However, their complex impacts depend on the urban environmental context as well as the small-scale heterogeneity, which need to be assessed by using the fully distributed hydrological model and high resolution data at small scale. In this paper, a case study (Guyancourt), located in the South-West of Paris, was explored. Three sets of high resolution X-band radar data were applied to investigate the impact of variability of spatial distribution of rainfall. High resolution geographic information has been processed to identify the suitable areas that can be covered by the LID/NBS practices, porous pavement, green roof, and rain garden. These individual practices, as well as the combination of the three, were implemented as scenarios in a fully distributed and physically-based Multi-Hydro model, which takes into consideration the variability of the whole catchment at 10 m scale. The performance of LID/NBS scenarios are analysed with two indicators (total runoff volume and peak discharge reduction), with regards to the hydrological response of the original catchment (baseline scenario). Results are analysed with considering the coupling effect of the variability of spatial distributions of rainfall and land uses. The performance of rain garden scenario is better than scenario of green roof and porous pavement. The most efficient scenario is the combination of the three practices that can reduce total runoff volume up to 51 % and peak discharge up to 53 % in the whole catchment, and the maximum values of the two indictors in three sub-catchments reach to 60 % and 61 % respectively. The results give credence that Multi-Hydro is a promising model for evaluating and quantifying the spatial variability of hydrological responses of LID/NBS practices, because of considering the heterogeneity of spatial distributions of precipitation and land uses. Potentially, it can guide the decision-making process of the design of LID/NBS practices in urban planning.


2021 ◽  
pp. 127-144
Author(s):  
Priscilla Alderson

Adverse mortality and morbidity effects of the huge oil spills in Bayelsa State, Niger Delta, illustrate the value of critical realism’s four planes of social being for organising complex findings and for combining large- and small-scale data sets. These planes cover every aspect of being human: bodies in relation to nature; interpersonal relations; larger social relations and structures; and inner human being in the mental-social-embodied personality. Chapter 5 also considers critical realist approaches to managing data-analysis: laminated systems analysis; interdisciplinary research and policy-making; critical realist theories about interdisciplinarity; overcoming barriers to interdisciplinarity, and interdisciplinary commitments. The detailed examples are about improving the physical health of people with a diagnosis of serious mental illness, and feminist-informed counselling after sexual assault.


Water ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 156 ◽  
Author(s):  
Barbara Mayr ◽  
Thomas Thaler ◽  
Johannes Hübl

International and national laws promote stakeholder collaboration and the inclusion of the community in flood risk management (FRM). Currently, relocation as a mitigation strategy against river floods in Central Europe is rarely applied. FRM needs sufficient preparation and engagement for successful implementation of household relocation. This case study deals with the extreme flood event in June 2016 at the Simbach torrent in Bavaria (Germany). The focus lies on the planning process of structural flood defense measures and the small-scale relocation of 11 households. The adaptive planning process started right after the damaging event and was executed in collaboration with authorities and stakeholders of various levels and disciplines while at the same time including the local citizens. Residents were informed early, and personal communication, as well as trust in actors, enhanced the acceptance of decisions. Although technical knowledge was shared and concerns discussed, resident participation in the planning process was restricted. However, the given pre-conditions were found beneficial. In addition, a compensation payment contributed to a successful process. Thus, the study illustrates a positive image of the implementation of the alleviation scheme. Furthermore, preliminary planning activities and precautionary behavior (e.g., natural hazard insurance) were noted as significant factors to enable effective integrated flood risk management (IFRM).


Sign in / Sign up

Export Citation Format

Share Document