Stochastic optimal scheduling of hydropower compensation for wind and photovoltaic power output considering multiple uncertainties

Author(s):  
Weifeng Liu ◽  
Chao Wang ◽  
Xiaohui Lei ◽  
Ping-an Zhong ◽  
Qingwen Lu

<p>Multiple uncertainties, including from the uncertainty of a single power (wind power or photovoltaic power) output forecasting to the uncertainty of the combined power output of wind and photovoltaic forecasting to the power shortage after hydropower compensation for wind and photovoltaic power output, exist in the wind-photovoltaic-hydropower system. Furthermore, as the forecast is updated, the above uncertainty will evolve accordingly. Revealing the evolution of multiple uncertainties is of great significance for the hydropower compensation for the combined power output of wind and photovoltaic. We use a generalized martingale model of forecast evolution to describe the uncertainty of a single power output. We then superimpose the single power output to obtain the combined power output of wind and photovoltaic. we establish a stochastic programming with recourse model for optimal scheduling of the hydropower compensation for wind and photovoltaic power output. The results indicate that the uncertainty of the combined power output of wind and photovoltaic forecasting is less than that of wind power output forecasting, and greater than that of photovoltaic power output forecasting. After hydropower compensates for combined power output of wind and photovoltaic, compared with the uncertainty of combined wind and photovoltaic power output forecasting, the uncertainty of power shortage is greatly reduced by 90%, which has significant benefits. And with the dynamic update of the forecast, the uncertainty of the single power output forecast, the uncertainty of the combined power output forecast, and the uncertainty of the power shortage will decrease accordingly.</p>

2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
Xiyun Yang ◽  
Le Zhang ◽  
Tianze Ye ◽  
Yuwei Yang ◽  
Yiwei Wang ◽  
...  

In-situ exploitation of oil shale by electric heating consumes large amounts of electricity. Under the existing dispatch system, using wind power output and photovoltaic power output to support the exploitation of oil shale can promote renewable energy use, reduce the consumption of coal and other fossil fuels, and protect the environment from pollution. In this study, the characteristics of the wind power and photovoltaic power output are analyzed, and the correlation between the power outputs is evaluated using the copula function. The load of exploiting oil shale is presented. In order to match the heating load characteristics of oil shale exploitation, a particle swarm optimization algorithm is used to optimize the heating temperature of the heated well to minimize the cost. An economic analysis is conducted of five different power supply combinations, including wind power, photovoltaic power, and the existing power grid. The income ratio of the five modes is calculated using actual data of a project in Jilin province in China, and the feasibility of in-situ electric heating by wind power, photovoltaic power, and the power grid is determined. The results of this study provide useful references for decision makers to plan the power supply scheme for in-situ oil shale exploitation.


2019 ◽  
Vol 11 (2) ◽  
pp. 305 ◽  
Author(s):  
Guan Wang ◽  
Zhongfu Tan ◽  
Qingkun Tan ◽  
Shenbo Yang ◽  
Hongyu Lin ◽  
...  

With the increasing proportion of distributed power supplies connected to the power grid, the application of a battery energy storage system (BESS) to a power system leads to new ideas of effectively solving the problem of distributed power grid connections. There is obvious uncertainty involved in distributed power output, and these uncertainties must be considered when optimizing the scheduling of virtual power plants. In this context, scene simulation technology was used to manage the uncertainty of wind power and photovoltaic output, forming a classic scenario. In this study, to reduce the influence of the uncertainty of wind and photovoltaic power output on the stable operation of the system, the time-of-use (TOU) prices and BESS were incorporated into the optimal scheduling problem that is inherent in wind and photovoltaic power. First, this study used the golden section method to simulate the wind and photovoltaic power output; second, the day-ahead wind and photovoltaic power output were used as the random variables; third, a wind and photovoltaic power BESS robust scheduling model that considers the TOU price was constructed. Finally, this paper presents the Institute of Electrical and Electronics Engineers (IEEE) 30 bus system in an example simulation, where the solution set is based on the Pareto principle, and the global optimal solution can be obtained by the robust optimization model. The results show that the cooperation between the TOU price and BESS can counteract wind and photovoltaic power uncertainties, improve system efficiency, and reduce the coal consumption of the system. The example analysis proves that the proposed model is practical and effective. By accounting for the influence of uncertainty of the optimal scheduling model, the actual operating cost can be reduced, and the robustness of the optimization strategy can be improved.


Author(s):  
Taisuke Masuta ◽  
Takashi Oozeki ◽  
Joao Gari da Silver Fonseca ◽  
Akinobu Murata

2020 ◽  
Vol 53 (2) ◽  
pp. 12157-12162
Author(s):  
Takeyoshi Kato ◽  
Masaki Imanaka ◽  
Muneaki Kurimoto ◽  
Shigeyuki Sugimoto

Sign in / Sign up

Export Citation Format

Share Document