scholarly journals Research and Economic Analysis of the Source-Load Coordination of Oil Shale Exploitation

2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
Xiyun Yang ◽  
Le Zhang ◽  
Tianze Ye ◽  
Yuwei Yang ◽  
Yiwei Wang ◽  
...  

In-situ exploitation of oil shale by electric heating consumes large amounts of electricity. Under the existing dispatch system, using wind power output and photovoltaic power output to support the exploitation of oil shale can promote renewable energy use, reduce the consumption of coal and other fossil fuels, and protect the environment from pollution. In this study, the characteristics of the wind power and photovoltaic power output are analyzed, and the correlation between the power outputs is evaluated using the copula function. The load of exploiting oil shale is presented. In order to match the heating load characteristics of oil shale exploitation, a particle swarm optimization algorithm is used to optimize the heating temperature of the heated well to minimize the cost. An economic analysis is conducted of five different power supply combinations, including wind power, photovoltaic power, and the existing power grid. The income ratio of the five modes is calculated using actual data of a project in Jilin province in China, and the feasibility of in-situ electric heating by wind power, photovoltaic power, and the power grid is determined. The results of this study provide useful references for decision makers to plan the power supply scheme for in-situ oil shale exploitation.

2013 ◽  
Vol 694-697 ◽  
pp. 846-849
Author(s):  
Jian Yuan Xu ◽  
Wei Fu Qi ◽  
Yun Teng

This paper mainly studies wind power fluctuations how to affect voltage stability after the wind power grid integration, and reactive power compensation equipment on improving effect. In certain parts of the wind farm, for example, firstly, analyzing the wind farm reactive power problems. Then introduce the reactive power compensation equipment that used in the wind farm. Finally, with PSCAD software, making a simulation analysis about the influence on the power grid voltage according to adopting the different reactive power compensation devices or not.


2013 ◽  
Vol 347-350 ◽  
pp. 1398-1403 ◽  
Author(s):  
Xiao Ming Liu ◽  
Xin Sheng Niu ◽  
Shan Jie Jia ◽  
Jie Zhang

The wind power, which enjoys the most mature technology and the most common commercial application, plays an important role in optimization of power supply structure and carbon release reduction. This is to analyze the influence of wind power integration on the power grid in terms of electric power quality, capacity of short circuit, power stability, power generation planning and dispatching etc. and propose increasing the bearable capacity of wind power by power grid by means of optimizing power supply structure, constructing strong power grid, choosing reasonable types of wind driven generators and reactive compensation equipment and completing relevant laws and regulations about wind power integration to power system.


2019 ◽  
Vol 79 ◽  
pp. 03017
Author(s):  
Mingyu Dong ◽  
Dezhi Li ◽  
Fenkai Chen ◽  
Meiyan Wang ◽  
Rongjun Chen ◽  
...  

With the development of smart power distribution technology in the future, a large range of power supply load (such as distributed wind power generation) will appear on the power receiving end. When distributed wind power is connected to the power grid on a large scale, it will have a certain impact on the safe and stable operation of the power grid. However, if the wind power output characteristics can be analyzed and the wind power output is properly regulated, the one-way flow of power from the distribution network to the user side will be broken, so that the future "network-load" has dual interaction characteristics based on response and substantial power exchange.


2021 ◽  
Vol 271 ◽  
pp. 01021
Author(s):  
Wang Zhenyu ◽  
Zhang Jianhua ◽  
Shao Chong ◽  
Xu Lanlan ◽  
Han Yongjun

With the rapid development of wind power, the randomness and volatility of wind power have also caused severe problems of wind power consumption. The phenomenon of wind abandonment is particularly prominent in the "three north" areas. The environmental protection and controllability of regenerative electric heating provide a way for wind absorption and abandonment. Therefore, this paper proposes a model to promote wind power consumption by using regenerative electric heating. Firstly, the principle and advantages of the heat storage electric heating equipment are described; secondly, the fine modeling of regenerative electric heating is carried out;then, the mode of using regenerative electric heating to promote wind power consumption is designed;finally, an example is given to analyze the wind power consumption effect and the revenue of load aggregators.Therefore, it is verified that this mode can effectively promote wind power consumption and reduce wind abandon generation, and provide reference for alleviating wind abandon and power limit problem.


2013 ◽  
Vol 05 (04) ◽  
pp. 393-397
Author(s):  
Jianfeng Wang ◽  
Dongmei Zhao
Keyword(s):  

2020 ◽  
Author(s):  
Weifeng Liu ◽  
Chao Wang ◽  
Xiaohui Lei ◽  
Ping-an Zhong ◽  
Qingwen Lu

<p>Multiple uncertainties, including from the uncertainty of a single power (wind power or photovoltaic power) output forecasting to the uncertainty of the combined power output of wind and photovoltaic forecasting to the power shortage after hydropower compensation for wind and photovoltaic power output, exist in the wind-photovoltaic-hydropower system. Furthermore, as the forecast is updated, the above uncertainty will evolve accordingly. Revealing the evolution of multiple uncertainties is of great significance for the hydropower compensation for the combined power output of wind and photovoltaic. We use a generalized martingale model of forecast evolution to describe the uncertainty of a single power output. We then superimpose the single power output to obtain the combined power output of wind and photovoltaic. we establish a stochastic programming with recourse model for optimal scheduling of the hydropower compensation for wind and photovoltaic power output. The results indicate that the uncertainty of the combined power output of wind and photovoltaic forecasting is less than that of wind power output forecasting, and greater than that of photovoltaic power output forecasting. After hydropower compensates for combined power output of wind and photovoltaic, compared with the uncertainty of combined wind and photovoltaic power output forecasting, the uncertainty of power shortage is greatly reduced by 90%, which has significant benefits. And with the dynamic update of the forecast, the uncertainty of the single power output forecast, the uncertainty of the combined power output forecast, and the uncertainty of the power shortage will decrease accordingly.</p>


Sign in / Sign up

Export Citation Format

Share Document