Skillful prediction of the winter North Atlantic Oscillation

Author(s):  
Ke Fan

<p>The winter North Atlantic oscillation (NAO), is a crucial part of our understanding of Eurasian and Atlantic climate variability and predictability. However, both the statistical forecast model and the coupled model showed the limited forecasting skill for the winter NAO. In this study, we developed effective prediction schemes based on the interannual increment prediction method and verified their performance based on the climate hindcasts of the coupled ocean–atmosphere climate models(DEMETER, ENSEMBLES,CFSV2). This approach utilizes the year-to-year increment of a variable (i.e. a difference in a variable between the current year and the previous year, e.g. DY of a variable) as the predictand rather than the anomaly of the variable. The results demonstrate that the new schemes can generally improve prediction skill of the winter NAO compared to the raw coupled model’s output(DEMETER, ENSEMBLES,CFSV2). Also, the new schemes show higher skill in prediction of abnormal NAO cases than the climatological prediction. Scheme-I uses just the NAO in the form of year-to-year increments as a predictor that is derived from the direct outputs of the models. Scheme-II is a hybrid prediction model that contains two predictors: the NAO derived from the coupled models, and the observed preceding autumn Atlantic sea surface temperature in the form of year-to-year increments. Scheme-II shows an even better prediction skill of the winter NAO than Scheme-I. Besides, a new statistical forecast scheme was also developed using observed North Atlantic sea surface temperature and Eurasian snow cover in the preceding autumn to predict the upcoming winter NAO. The statistical prediction model showed high predictive skill in reproducing the interannual and interdecadal variability of NAO in boreal winter.</p>

2015 ◽  
Vol 28 (16) ◽  
pp. 6309-6323 ◽  
Author(s):  
Neil F. Tandon ◽  
Paul J. Kushner

Abstract Numerous studies have suggested that variations in the strength of the Atlantic meridional overturning circulation (AMOC) may drive predictable variations in North Atlantic sea surface temperature (NASST). However, two recent studies have presented results suggesting that coupled models disagree on both the sign and the phasing of the correlation between AMOC and NASST indices. These studies analyzed linearly detrended output from twentieth-century historical simulations in phases 3 and 5 of the Coupled Model Intercomparison Project (CMIP3 and CMIP5). The present study argues that the apparent disagreement among models arises from a comingling of two processes: 1) a bottom-up effect in which unforced AMOC changes lead to NASST changes of the same sign and 2) a top-down effect in which forced NASST changes lead to AMOC changes of the opposite sign. Linear detrending is not appropriate for separating these two effects because the time scales of forced and unforced variations are not well separated. After forced variations are properly removed, the models come into much closer agreement with each other. This argument is supported by analysis of CMIP5 historical simulations, as well as preindustrial control simulations and a 29-member ensemble of the Community Earth System Model, version 1, covering the period 1920–2005. Additional analysis is presented suggesting that, even after the data are linearly detrended, a significant portion of observed NASST persistence may be externally forced.


2011 ◽  
Vol 75 (3) ◽  
pp. 571-575 ◽  
Author(s):  
José C. Báez ◽  
Juan J. Bellido ◽  
Francisco Ferri-Yáñez ◽  
Juan J. Castillo ◽  
Juan J. Martín ◽  
...  

2020 ◽  
Vol 33 (22) ◽  
pp. 9653-9672
Author(s):  
Shaobo Qiao ◽  
Meng Zou ◽  
Shankai Tang ◽  
Ho Nam Cheung ◽  
Haijing Su ◽  
...  

AbstractThe impact of the wintertime North Atlantic Oscillation (NAO) on the subsequent sea surface temperature (SST) anomalies over the tropical Atlantic has experienced obvious interdecadal changes during 1950–2015. During 1995–2015, the negative (positive) phase of the wintertime NAO favors positive (negative) SST anomalies over the tropical Atlantic in the subsequent spring–summer, whereas the NAO–SST connection is insignificant during 1970–94 and is confined to the northern tropical Atlantic (NTA) during 1950–69. Compared to 1970–94, the much stronger influence on the NTA SST during 1995–2015 and 1950–69 is associated with a southward shift of the southern boundary of the NAO. During 1995–2015, the inverted NAO-related warming of the tropical Atlantic consists of three stages: 1) the pronounced increase in SST over the subtropical North Atlantic (SNA) and the tropical South Atlantic (TSA) during December–January, 2) the pronounced increase in SST over the northwestern tropical Atlantic (NWTA) during February–April, and 3) the persistent warming over the tropical Atlantic during May–August. The increases in SST over the SNA and the TSA are attributed to significant positive latent heat flux anomalies via the wind–evaporation effect, which are connected by the suppressed regional Hadley circulation. Afterward, the associated anomalous downward motion over the NWTA persists into February–April, which induces more incoming shortwave radiation and results in a significant increase in the local SST via the cloud–radiation effect. In contrast, during 1950–69, due to the decreased interannual variability of the vertical motion over the NWTA, the anomalous downward branch aloft and the low-level cross-equatorial northwesterly winds associated with the inverted NAO are not evident, and thus the regions with an increase in SST are confined to the Northern Hemisphere.


Author(s):  
M.N Tsimplis ◽  
A.G.P Shaw ◽  
R.A Flather ◽  
D.K Woolf

The thermosteric contribution of the North Atlantic Oscillation (NAO) to the North Sea sea-level for the winter period is investigated. Satellite sea surface temperature as well as in situ measurements are used to define the sensitivity of winter water temperature to the NAO as well as to determine the trends in temperature. The sea surface temperature sensitivity to the NAO is about 0.85 °C per unit NAO, which results in thermosteric sea-level changes of about 1–2 cm per unit NAO. The sensitivity of sea surface temperatures to the NAO is strongly time-dependent. Model data from a two-dimensional hydrodynamic tide+surge model are used in combination with the estimated thermosteric anomalies to explain the observed sea-level changes and, in particular, the sensitivity of the datasets to the NAO variability. The agreement between the model and the observed data is improved by the inclusion of the thermosteric effect.


Sign in / Sign up

Export Citation Format

Share Document