Tropospheric Aqueous-phase Oxidation of Green Leaf Volatiles with Hydroxyl, Sulfate and Nitrate Radicals

Author(s):  
Kumar Sarang ◽  
Tobias Otto ◽  
Krzysztof Rudzinski ◽  
Irena Grgic ◽  
Klara Nestorowicz ◽  
...  

<p><strong>Introduction</strong><br> Numerous green leaf volatiles (GLVs) are released into the atmosphere due to the stress, cell damage or wounding. Fog forming over vegetation takes up these compounds, promoting their aqueous-phase oxidation to less volatile compounds. The droplets eventually dry out, leaving behind the secondary organic aerosol (SOA). These pathways are still poorly recognized as potentially novel routes for the formation of atmospheric SOA. Kinetic investigations of GLVs in the gas phase have already been reported by Shalamzari et. al. 2014, Davis et. al. 2011 and many others, while there is no kinetic data on the aqueous phase reactions of selected C6 and C5 GLVs. In the present study, we focussed on the kinetic studies of GLVs with the hydroxyl, sulfate and nitrate radicals as a possible source of aqueous SOA.</p><p><strong>Experimental method</strong><br> The rate constants of reactions of GLVs with atmospherically relevant radicals were studied using a laser flash photolysis-laser long path absorption (LFP-LLPA). Kinetic investigations of GLVs with hydroxyl radicals were performed using competition kinetics, where H<sub>2</sub>O<sub>2</sub> (2 x 10<sup>-4</sup> mol L<sup>-1</sup>) was used as a radical precursor and KSCN (2 x 10<sup>-5</sup> mol L<sup>-1</sup>) as a reference compound. The method is similar to that introduced by Behar, et al. 1972. Kinetic measurements of sulfate and nitrate radicals with GLVs, were done using a direct flash photolysis method, where sodium persulfate (5 x 10<sup>-4</sup> mol L<sup>-1</sup>) was the precursor in the generation of SO<sub>4</sub><sup>•ꟷ</sup> and sodium nitrate (1 x 10<sup>-1</sup> mol L<sup>-1</sup>) and sodium sulfate (3 x 10<sup>-2</sup> mol L<sup>-1</sup>) were the precursor for the generation of nitrate radicals.</p><p><strong>Conclusions</strong><br> In the present study, we explored the kinetics of aqueous-phase reactions of three GLVs- 1-penten-3-ol, cis-2-hexen-1-ol and 2-E-hexenal - with atmospheric radicals SO<sub>4</sub><sup>•ꟷ</sup>, <sup>•</sup>OH and NO<sub>3</sub><sup>•</sup>. The second-order rate constants were determined for a temperature range of 278 K to 318 K. A weak temperature dependence was observed for the aqueous-phase kinetics of all three GLVs with selected atmospherically relevant radicals. To explain the weak temperature dependence of aqueous-phase reaction of GLVs with atmospheric radicals, rate constants were investigated for the diffusion limitation. The atmospheric significance of the aqueous-phase reaction was evaluated, by calculating aqueous-phase lifetime and their relative rate to the gas phase reactions with respective radicals, which clearly demonstrated their importance above the gas-phase reactions in tropospheric aqueous-phase. The present work is a part of the bigger research project on the aqueous-phase reactions of a series of atmospherically relevant GLVs whereas a next step oxidation products in the aqueous-phase are being investigated at a present stage. </p><p>This project is supported by the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 711859 and by financial resources for science in the years 2017-2021 awarded by the Polish Ministry of Science and Higher Education for the implementation of an international co-financed project. The research project was also partially supported by funding under Project CREATE of European Union’s H2020 and ERASMUS PLUS staff mobility programme.</p>

1982 ◽  
Vol 14 (8) ◽  
pp. 839-847 ◽  
Author(s):  
Roger Atkinson ◽  
Sara M. Aschmann ◽  
William P. L. Carter ◽  
James N. Pitts

2020 ◽  
Author(s):  
Andreas Tilgner ◽  
Erik Hans Hoffmann ◽  
Lin He ◽  
Bernd Heinold ◽  
Can Ye ◽  
...  

<p>During winter, the North China Plain (NCP) is frequently characterized by severe haze conditions connected with extremely high PM2.5 and NOx concentrations, i.e. strong air pollution. The NCP is one of the most populated regions worldwide where haze periods have direct health effects. Tropospheric haze particles are a complex multiphase and multi-component environment, in which multiphase chemical processes are able to alter the chemical aerosol composition and deduced physical aerosol properties and can strongly contribute to air pollution. Despite many past investigations, the chemical haze processing is still uncertain and represents a challenge to atmospheric chemistry research. Recent NCP studies during autumn/winter 2017 haze periods have revealed unexpected high H<sub>2</sub>O<sub>2</sub> concentrations of about 1 ppb suggesting H<sub>2</sub>O<sub>2</sub> as a potential contributor to secondary PM2.5 mass, e.g., due to sulfur(IV) oxidation. However, the multiphase H<sub>2</sub>O<sub>2</sub> formation under such NOx concentrations is still unclear. Therefore, the present study aimed at the examination of potential multiphase H<sub>2</sub>O<sub>2</sub> formation pathways, and the feedback on sulfur oxidation.</p><p>Multiphase chemistry simulations of a measurement campaign in the NCP are performed with the box model SPACCIM. The multiphase chemistry model within SPACCIM contains the gas-phase mechanism MCMv3.2 and the aqueous-phase mechanism CAPRAM4.0 together with both its aromatics module CAPRAM-AM1.0 and its halogen module CAPRAM-HM2.1. Furthermore, based on available literature data, the multiphase chemistry mechanism is extended considering further multiphase formation pathways of HONO and an advanced HOx mechanism scheme enabling higher in-situ H<sub>2</sub>O<sub>2</sub> formations in haze particles. The simulations have been performed for three periods characterized by high H<sub>2</sub>O<sub>2</sub> concentrations, high RH and PM2.5 conditions and high measurement data availability. Several sensitivity runs have been performed examining the impact of the soluble transition metal ion (TMI) content on the predicted H<sub>2</sub>O<sub>2</sub> formation.</p><p>Simulations with the improved multiphase chemistry mechanism shows a good agreement of the modelled H<sub>2</sub>O<sub>2</sub> concentrations with field data. The modelled H<sub>2</sub>O<sub>2</sub> concentration shows a substantial dependency on the soluble TMI content. Higher soluble TMI contents result in higher H<sub>2</sub>O<sub>2</sub> concentrations demonstrating the strong influence of TMI chemistry in haze particles on H<sub>2</sub>O<sub>2</sub> formation. The analysis of the chemical production and sink fluxes reveals that a huge fraction of the multiphase HO<sub>2</sub> radicals and nearly all of the subsequently formed reaction product H<sub>2</sub>O<sub>2</sub> is produced in-situ within the haze particles and does not origin from the gas phase. Further chemical analyses show that, during the morning hours, the aqueous-phase reaction of H<sub>2</sub>O<sub>2</sub> with S(IV) contributes considerably to S(VI) formation beside the HONO related formation of sulfuric acid by OH in the gas-phase.</p><p>Finally, a parameterization was developed to study the particle-phase H<sub>2</sub>O<sub>2</sub> formations as potential source with the global model ECHAM-HAMMOZ. The performed global modelling identifies an increase of gas-phase H<sub>2</sub>O<sub>2</sub> by a factor of 2.8 through the newly identified particle chemistry. Overall, the study demonstrated that photochemical reactions of HULIS and TMIs in particles are an important H<sub>2</sub>O<sub>2</sub> source leading to increased particle sulfate formation.</p>


Sign in / Sign up

Export Citation Format

Share Document