Water management plans and sea level rise impacts on seawater intrusion in the Red River Delta, Vietnam

Author(s):  
Hien Thi Nguyen ◽  
Hai Yen Nguyen ◽  
Matteo Balistrocchi ◽  
Roberto Ranzi

<p>Seawater intrusion in coastal areas is now rising as a serious problem for river deltas in the world, especially when high tidal levels occur. Red River Delta plays a paramount role in the economy and society of Vietnam and has already been experiencing the increase in salinity concentrations. The combination of high tidal levels and multi-purposes reservoirs operations in the upstream watershed could exacerbate saltwater intrusion. This research, therefore, analyses the impacts of different water management plans, according to reservoirs operations coupled with sea level rise scenarios, on salinity dynamics in the Red River Delta. Two sea level rise projections referred to RCP4.5 and RCP8.5 emission scenarios have been selected for the simulations of future salinity intrusions in 2050 and 2100. In consideration of the important junction of the 3 main upstream rivers (Lo, Thao and Da River), discharge at Son Tay gauge station is selected as the upstream boundary condition for riverflow. Different discharge scenarios in Son Tay station are, hence, adopted based on statistical analysis of runoff data after the construction of the major reservoirs, started in 1973. Taking into account the 25%, 50%, 75%, 95% exceedance quantiles of the minimum monthly riverflow in Son Tay station combined with 4 downstream sea level rise scenarios, 16 salinity profiles along the Red River Delta reaches were obtained by 1D-hydrodynamic simulations. The results are useful as a guidance to plan multi-purposes reservoirs operations, considering environmental, agricultural, industrial and flood-protection targets.</p>

2015 ◽  
Vol 7 (6) ◽  
pp. 6553-6572 ◽  
Author(s):  
James Neumann ◽  
Kerry Emanuel ◽  
Sai Ravela ◽  
Lindsay Ludwig ◽  
Caroleen Verly

2004 ◽  
Vol 164 (3-4) ◽  
pp. 237-249 ◽  
Author(s):  
Kazuaki Hori ◽  
Susumu Tanabe ◽  
Yoshiki Saito ◽  
Shigeko Haruyama ◽  
Viet Nguyen ◽  
...  

2016 ◽  
Vol 2 (5) ◽  
pp. e1501768 ◽  
Author(s):  
Vamsi Ganti ◽  
Austin J. Chadwick ◽  
Hima J. Hassenruck-Gudipati ◽  
Brian M. Fuller ◽  
Michael P. Lamb

River deltas worldwide are currently under threat of drowning and destruction by sea-level rise, subsidence, and oceanic storms, highlighting the need to quantify their growth processes. Deltas are built through construction of sediment lobes, and emerging theories suggest that the size of delta lobes scales with backwater hydrodynamics, but these ideas are difficult to test on natural deltas that evolve slowly. We show results of the first laboratory delta built through successive deposition of lobes that maintain a constant size. We show that the characteristic size of delta lobes emerges because of a preferential avulsion node—the location where the river course periodically and abruptly shifts—that remains fixed spatially relative to the prograding shoreline. The preferential avulsion node in our experiments is a consequence of multiple river floods and Froude-subcritical flows that produce persistent nonuniform flows and a peak in net channel deposition within the backwater zone of the coastal river. In contrast, experimental deltas without multiple floods produce flows with uniform velocities and delta lobes that lack a characteristic size. Results have broad applications to sustainable management of deltas and for decoding their stratigraphic record on Earth and Mars.


Sign in / Sign up

Export Citation Format

Share Document