The Method of Curvature Attribute applied in the Depth Inversion of the Geological Bodies Edge by Potential Field Data

Author(s):  
Jinlan Liu ◽  
Wanyin Wang ◽  
Shengqing Xiong

<p>It is vital to quickly and effectively determine the extent and depth of geological body by using potential field data in gravity and magnetic survey. In this study, three key techniques studying the extent and depth of geological sources based on curvature attribute are studied: the optimal solutions to the objective function, the edge of geological bodies and picking out solutions. Firstly, the optimal solution to the objective function is studied, that is, the key extraction algorithm about the curvature attribute. The Huber norm is introduced into the extraction algorithm of curvature attribute, which more accurately detect the depth of edge of the geological bodies. Secondly, the normalized vertical derivative of the total horizontal derivative (NVDR-THDR) technique is introduced into curvature attribute, which shows more continuous results about the edge position of the geological bodies and more sensitive to the small-scale tectonic structure. Finally, we study the way to pick out the inversion solution, that is, to solve the multi-solution equations in the inversion. The upward continuation of a certain height with strict physical significance was introduced into the inversion method, which was used to suppress the noise, and the final and actual inversion depth was equal to the inversion depth minus the height of upward continuation. And the average value of threshold limitation technology of the potential fields data was also introduced into this method. Using the two technologies, solutions of non-field source edge positions were eliminated, and make the inversion solutions closer to the actual situation. Through the above three key techniques, the accuracy, continuity and recognition to the small-scale structure of the inversion result are optimized. The theoretical models are used to verify the effectiveness of the above key technologies, the results show that the three key technologies have achieved good results, and the combined models are used to verify the effectiveness of the optimized inversion method. The measured aeromagnetic data were used to inversing the edge depth of the intrusive rock in a mining area, and the inversion results are in good agreement with the rock depth revealed by borehole.</p>

Geophysics ◽  
2004 ◽  
Vol 69 (6) ◽  
pp. 1405-1413 ◽  
Author(s):  
João B. C. Silva ◽  
Valéria C. F. Barbosa

We introduce a new 2D method for inverting potential‐field data with model constraints designed by the interpreter. Our method uses an interpretation model consisting of a source with polygonal cross‐section whose vertices are described by polar coordinates with an origininside the source. With this coordinate system, constraints in an inversion are easier to develop and apply. Our inversion method assumes a known physical property contrast for the source and estimates the radii associated with the polygon vertices for a fixed number of equally spaced angles from 0° to 360°. A wide variety of constraints may be used to stabilize the solutions by introducing information about the source shape. The method recovers stable solutions whose shapes range from almost circular or pear‐shaped to elongated in one or more directions. The convexity constraint applied to the source shape, despite requiring no quantitative information, is more versatile than the other constraints. The convexity constraint efficiently recovers source geometries that are either isometric or elongated in one direction.


2020 ◽  
Vol 10 (14) ◽  
pp. 4798
Author(s):  
Naín Vera ◽  
Carlos Couder-Castañeda ◽  
Jorge Hernández ◽  
Alfredo Trujillo-Alcántara ◽  
Mauricio Orozco-del-Castillo ◽  
...  

Potential-field-data imaging of complex geological features in deepwater salt-tectonic regions in the Gulf of Mexico remains an open active research field. There is still a lack of resolution in seismic imaging methods below and in the surroundings of allochthonous salt bodies. In this work, we present a novel three-dimensional potential-field-data simultaneous inversion method for imaging of salt features. This new approach incorporates a growth algorithm for source estimation, which progressively recovers geological structures by exploring a constrained parameter space; restrictions are posed from a priori geological knowledge of the study area. The algorithm is tested with synthetic data corresponding to a real complex salt-tectonic geological setting commonly found in exploration areas of deepwater Gulf of Mexico. Due to the huge amount of data involved in three-dimensional inversion of potential field data, the use of parallel computing techniques becomes mandatory. In this sense, to alleviate computational burden, an easy to implement parallelization strategy for the inversion scheme through OpenMP directives is presented. The methodology was applied to invert and integrate gravity, magnetic and full tensor gradient data of the study area.


Geophysics ◽  
2012 ◽  
Vol 77 (1) ◽  
pp. G13-G24 ◽  
Author(s):  
Maurizio Fedi ◽  
Mark Pilkington

Several noniterative, imaging methods for potential field data have been proposed that provide an estimate of the 3D magnetization/density distribution within the subsurface or that produce images of quantities related or proportional to such distributions. They have been derived in various ways, using generalized linear inversion, Wiener filtering, wavelet and depth from extreme points (DEXP) transformations, crosscorrelation, and migration. We demonstrated that the resulting images from each of these approaches are equivalent to an upward continuation of the data, weighted by a (possibly) depth-dependent function. Source distributions or related quantities imaged by all of these methods are smeared, diffuse versions of the true distributions; but owing to the stability of upward continuation, resolution may be substantially increased by coupling derivative and upward continuation operators. These imaging techniques appeared most effective in the case of isolated, compact, and depth-limited sources. Because all the approaches were noniterative, computationally fast, and in some cases, produced a fit to the data, they did provide a quick, but approximate picture of physical property distributions. We have found that inherent or explicit depth-weighting is necessary to image sources at their correct depths, and that the best scaling law or weighting function has to be physically based, for instance, using the theory of homogeneous fields. A major advantage of these techniques was their speed, efficiently providing a basis for further detailed, follow-up modelling.


Sign in / Sign up

Export Citation Format

Share Document