scholarly journals OpenMP Implementation of a Novel Potential-Field-Data Source-Growth-Based Inversion Approach for 3D Salt Imaging in Deepwater Gulf of Mexico

2020 ◽  
Vol 10 (14) ◽  
pp. 4798
Author(s):  
Naín Vera ◽  
Carlos Couder-Castañeda ◽  
Jorge Hernández ◽  
Alfredo Trujillo-Alcántara ◽  
Mauricio Orozco-del-Castillo ◽  
...  

Potential-field-data imaging of complex geological features in deepwater salt-tectonic regions in the Gulf of Mexico remains an open active research field. There is still a lack of resolution in seismic imaging methods below and in the surroundings of allochthonous salt bodies. In this work, we present a novel three-dimensional potential-field-data simultaneous inversion method for imaging of salt features. This new approach incorporates a growth algorithm for source estimation, which progressively recovers geological structures by exploring a constrained parameter space; restrictions are posed from a priori geological knowledge of the study area. The algorithm is tested with synthetic data corresponding to a real complex salt-tectonic geological setting commonly found in exploration areas of deepwater Gulf of Mexico. Due to the huge amount of data involved in three-dimensional inversion of potential field data, the use of parallel computing techniques becomes mandatory. In this sense, to alleviate computational burden, an easy to implement parallelization strategy for the inversion scheme through OpenMP directives is presented. The methodology was applied to invert and integrate gravity, magnetic and full tensor gradient data of the study area.

Geophysics ◽  
1984 ◽  
Vol 49 (6) ◽  
pp. 780-786 ◽  
Author(s):  
Misac N. Nabighian

The paper extends to three dimensions (3-D) the two‐dimensional (2-D) Hilbert transform relations between potential field components. For the 3-D case, it is shown that the Hilbert transform is composed of two parts, with one part acting on the X component and one part on the Y component. As for the previously developed 2-D case, it is shown that in 3-D the vertical and horizontal derivatives are the Hilbert transforms of each other. The 2-D Cauchy‐Riemann relations between a potential function and its Hilbert transform are generalized for the 3-D case. Finally, the previously developed concept of analytic signal in 2-D can be extended to 3-D as a first step toward the development of an automatic interpretation technique for potential field data.


2020 ◽  
Author(s):  
Mateusz Mikołajczak ◽  
Jan Barmuta ◽  
Małgorzata Ponikowska ◽  
Stanislaw Mazur ◽  
Krzysztof Starzec

<p>The Silesian Nappe in the westernmost part of the Polish Outer Carpathians Fold and Thrust Belt exhibits simple, almost homoclinal character. Based on the field observations, a total stratigraphic thickness of this sequence equals to at least 5400 m. On the other hand, the published maps of the sub-Carpathian basement show its top at depths no greater than 3000 m b.s.l. or even 2000 m b.s.l. in the southern part of the Silesian Nappe. Assuming no drastic thickness variations within the sedimentary sequence of the Silesian Nappe, such estimates of the basement depth are inconsistent with the known thickness of the Silesian sedimentary succession. The rationale behind our work was to resolve this inconsistency and verify the actual depth and structure of the sub-Carpathian crystalline basement along two regional cross-sections. In order to achieve this goal, a joint 2D quantitative interpretation of gravity and magnetic data was performed along these regional cross-sections. The interpretation was supported by the qualitative analysis of magnetic and gravity maps and their derivatives to recognize structural features in the sub-Carpathian basement. The study was concluded with the 3D residual gravity inversion for the top of basement. The cross-sections along with the borehole data available from the area were applied to calibrate the inversion.</p><p>In the westernmost part of the Polish Outer Carpathians, the sub-Carpathian basement comprises part of the Brunovistulian Terrane. Because of great depths, the basement structure was investigated mainly by geophysical, usually non-seismic, methods. However, some deep boreholes managed to penetrate the basement that is composed of Neoproterozoic metamorphic and igneous rocks. The study area is located within the Upper Silesian block along the border between Poland and Czechia. There is a basement uplift as known mainly from boreholes, but the boundaries and architecture of this uplift are poorly recognized. Farther to the south, the top of the Neoproterozoic is buried under a thick cover of lower Palaeozoic sediments and Carpathian nappes.</p><p>Our integrative study allowed to construct a three-dimensional map for the top of basement the depth of which increases from about 1000 m to over 7000 m b.s.l. in the north and south of the study area, respectively. Qualitative analysis of magnetic and gravity data revealed the presence of some  basement-rooted faults delimiting the extent of the uplifted basement. The interpreted faults are oriented mainly towards NW-SE and NE-SW. Potential field data also document the correlation between the main basement steps and important thrust faults.</p><p> </p><p>This work has been funded by the Polish National Science Centre grant no UMO-2017/25/B/ST10/01348</p>


2014 ◽  
Vol 33 (4) ◽  
pp. 448-450 ◽  
Author(s):  
Leonardo Uieda ◽  
Vanderlei C. Oliveira ◽  
Valéria C. F. Barbosa

In this tutorial, we will talk about a widely used method of interpretation for potential-field data called Euler de-convolution. Our goal is to demonstrate its usefulness and, most important, to call attention to some pitfalls encountered in interpretation of the results. The code and synthetic data required to reproduce our results and figures can be found in the accompanying IPython notebooks ( ipython.org/notebook ) at dx.doi.org/10.6084/m9.figshare.923450 or github.com/pinga-lab/paper-tle-euler-tutorial . The note-books also expand the analysis presented here. We encourage you to download the data and try them on your software of choice. For this tutorial, we will use the implementation in the open-source Python package Fatiando a Terra ( fatiando.org ).


Geophysics ◽  
1990 ◽  
Vol 55 (5) ◽  
pp. 549-555 ◽  
Author(s):  
Mark Pilkington ◽  
W. E. S. Urquhart

Most existing techniques for potential field data enhancement and interpretation require data on a horizontal plane. Hence, when observations are made on an irregular surface, reduction to a horizontal plane is necessary. To effect this reduction, an equivalent source distribution that models the observed field is computed on a mirror image of the observation surface. This irregular mirror image surface is then replaced by a horizontal plane and the effect of the equivalent sources is computed on the required horizontal level. This calculated field approximates the field reduced to a horizontal plane. The good quality of this approximation is demonstrated by two‐dimensional synthetic data examples in which the maximum errors occur in areas of steep topographic gradients and increased magnetic field intensity. The approach is also applied to a portion of a helicopter‐borne aeromagnetic survey from the Gaspé region in Quebec, Canada, where the results are a horizontal shifting of anomaly maxima of up to 150 m and changes in anomaly amplitudes of up to 100 nT.


Geophysics ◽  
2004 ◽  
Vol 69 (6) ◽  
pp. 1405-1413 ◽  
Author(s):  
João B. C. Silva ◽  
Valéria C. F. Barbosa

We introduce a new 2D method for inverting potential‐field data with model constraints designed by the interpreter. Our method uses an interpretation model consisting of a source with polygonal cross‐section whose vertices are described by polar coordinates with an origininside the source. With this coordinate system, constraints in an inversion are easier to develop and apply. Our inversion method assumes a known physical property contrast for the source and estimates the radii associated with the polygon vertices for a fixed number of equally spaced angles from 0° to 360°. A wide variety of constraints may be used to stabilize the solutions by introducing information about the source shape. The method recovers stable solutions whose shapes range from almost circular or pear‐shaped to elongated in one or more directions. The convexity constraint applied to the source shape, despite requiring no quantitative information, is more versatile than the other constraints. The convexity constraint efficiently recovers source geometries that are either isometric or elongated in one direction.


Geophysics ◽  
1984 ◽  
Vol 49 (8) ◽  
pp. 1327-1337 ◽  
Author(s):  
Laura F. Serpa ◽  
Kenneth L. Cook

Aeromagnetic and gravity surveys were conducted in the Black Rock Desert, Utah to assess the geothermal potential of the Meadow‐Hatton Known Geothermal Resource Area (KGRA). The presence of basalt flows less than 1000 yr old and a 400 000 yr old rhyolite dome suggested that a hot intrusive body, which should be detectable in both types of potential field data, may provide the heat source for hot springs in the study area. A simultaneous inversion computer program was developed as part of this study to model these potential field data. The resulting models indicate hydrothermal alteration about the hot springs extending to a depth of approximately 1 km. Normal faults above a low‐angle detachment appear to reach a depth of approximately 4 km and provide a path for the circulation of groundwater in the area. No evidence for a buried igneous body was found in the study area, and it is therefore concluded that the migration of fluids along the deep faults is sufficient to account for the water temperatures estimated for the KGRA.


2022 ◽  
Vol 9 ◽  
Author(s):  
José P. Calderón ◽  
Luis A. Gallardo

Potential field data have long been used in geophysical exploration for archeological, mineral, and reservoir targets. For all these targets, the increased search of highly detailed three-dimensional subsurface volumes has also promoted the recollection of high-density contrast data sets. While there are several approaches to handle these large-scale inverse problems, most of them rely on either the extensive use of high-performance computing architectures or data-model compression strategies that may sacrifice some level of model resolution. We posit that the superposition and convolutional properties of the potential fields can be easily used to compress the information needed for data inversion and also to reduce significantly redundant mathematical computations. For this, we developed a convolution-based conjugate gradient 3D inversion algorithm for the most common types of potential field data. We demonstrate the performance of the algorithm using a resolution test and a synthetic experiment. We then apply our algorithm to gravity and magnetic data for a geothermal prospect in the Acoculco caldera in Mexico. The resulting three-dimensional model meaningfully determined the distribution of the existent volcanic infill in the caldera as well as the interrelation of various intrusions in the basement of the area. We propose that these intrusive bodies play an important role either as a low-permeability host of the heated fluid or as the heat source for the potential development of an enhanced geothermal system.


2020 ◽  
Author(s):  
Jinlan Liu ◽  
Wanyin Wang ◽  
Shengqing Xiong

<p>It is vital to quickly and effectively determine the extent and depth of geological body by using potential field data in gravity and magnetic survey. In this study, three key techniques studying the extent and depth of geological sources based on curvature attribute are studied: the optimal solutions to the objective function, the edge of geological bodies and picking out solutions. Firstly, the optimal solution to the objective function is studied, that is, the key extraction algorithm about the curvature attribute. The Huber norm is introduced into the extraction algorithm of curvature attribute, which more accurately detect the depth of edge of the geological bodies. Secondly, the normalized vertical derivative of the total horizontal derivative (NVDR-THDR) technique is introduced into curvature attribute, which shows more continuous results about the edge position of the geological bodies and more sensitive to the small-scale tectonic structure. Finally, we study the way to pick out the inversion solution, that is, to solve the multi-solution equations in the inversion. The upward continuation of a certain height with strict physical significance was introduced into the inversion method, which was used to suppress the noise, and the final and actual inversion depth was equal to the inversion depth minus the height of upward continuation. And the average value of threshold limitation technology of the potential fields data was also introduced into this method. Using the two technologies, solutions of non-field source edge positions were eliminated, and make the inversion solutions closer to the actual situation. Through the above three key techniques, the accuracy, continuity and recognition to the small-scale structure of the inversion result are optimized. The theoretical models are used to verify the effectiveness of the above key technologies, the results show that the three key technologies have achieved good results, and the combined models are used to verify the effectiveness of the optimized inversion method. The measured aeromagnetic data were used to inversing the edge depth of the intrusive rock in a mining area, and the inversion results are in good agreement with the rock depth revealed by borehole.</p>


Sign in / Sign up

Export Citation Format

Share Document