scholarly journals Analysis of stable water isotopes in tropospheric moisture during the West African Monsoon

Author(s):  
Christopher Diekmann ◽  
Matthias Schneider ◽  
Franziska Aemisegger ◽  
Fabienne Dahinden ◽  
Benjamin Ertl ◽  
...  

<p>Three-dimensional distributions of atmospheric moisture with high spatial and temporal variability arise from the complex interaction of the various branches in the hydrological cycle. By studying abundances of stable water isotopes, one can retrieve fundamental information about the physical processes acting in these branches. Differences in the molecular structure lead to characteristic responses of each water isotope to phase change processes, which reflects on characteristic ratios of water isotopes in different branches of the hydrological cycle.</p><p>In this study, we use tropospheric distributions of H<sub>2</sub>O and HDO (denoted as δD) to identify dominant processes in the hydrological cycle during the wet phase of the West African Monsoon in boreal summer. Here, large gradients in water vapor, strong convective activity and continental recycling lead to high variability of tropospheric moisture and its isotopic composition. This complexity makes a direct attribution of observed water vapor signals to underlying processes challenging.</p><p>To address this challenge, we use remotely sensed {H<sub>2</sub>O, δD} – pair data retrieved from spectra of the thermal infrared satellite sensor IASI, which are available daily and globally from October 2014 to June 2019. For an improved understanding of the IASI data, we add high-resolution model data from the regional isotope-enabled model COSMO-iso and generate Lagrangian backward trajectories for the Sahelian troposphere. This provides valuable insights into geometrical and moisture pathways along the history of Sahelian air masses that were observed from IASI. Further, after applying a retrieval simulator on the COSMO-iso data, we can conduct direct satellite-to-model comparisons. <br>By drawing these datasets together, we document and analyze the characteristic variability of the {H<sub>2</sub>O, δD} – pairs for the Sahelian troposphere on interannual, seasonal and convective scales. We identify distinct effects on {H<sub>2</sub>O, δD} – pairs of (1) synoptic-scale and boundary air mass mixing, (2) rain condensation during convection and (3) partial evaporation and isotope equilibration of rain drops during convection.</p><p>This study reveals the potential of using MUSICA IASI {H<sub>2</sub>O, δD} – pair data together with high-resolution modeling for investigating the tropospheric hydrological cycle. This approach is promising for understanding the relative importance of large-scale dynamics against microphysical phase transitions during convection on the tropical moisture distribution.</p>

2021 ◽  
Author(s):  
Christopher Johannes Diekmann ◽  
Matthias Schneider ◽  
Peter Knippertz ◽  
Andries Jan de Vries ◽  
Stephan Pfahl ◽  
...  

2021 ◽  
Vol 126 (19) ◽  
Author(s):  
Christopher J. Diekmann ◽  
Matthias Schneider ◽  
Peter Knippertz ◽  
Andries J. Vries ◽  
Stephan Pfahl ◽  
...  

2016 ◽  
Vol 144 (4) ◽  
pp. 1571-1589 ◽  
Author(s):  
Rory G. J. Fitzpatrick ◽  
Caroline L. Bain ◽  
Peter Knippertz ◽  
John H. Marsham ◽  
Douglas J. Parker

Abstract Accurate prediction of the commencement of local rainfall over West Africa can provide vital information for local stakeholders and regional planners. However, in comparison with analysis of the regional onset of the West African monsoon, the spatial variability of the local monsoon onset has not been extensively explored. One of the main reasons behind the lack of local onset forecast analysis is the spatial noisiness of local rainfall. A new method that evaluates the spatial scale at which local onsets are coherent across West Africa is presented. This new method can be thought of as analogous to a regional signal against local noise analysis of onset. This method highlights regions where local onsets exhibit a quantifiable degree of spatial consistency (denoted local onset regions or LORs). It is found that local onsets exhibit a useful amount of spatial agreement, with LORs apparent across the entire studied domain; this is in contrast to previously found results. Identifying local onset regions and understanding their variability can provide important insight into the spatial limit of monsoon predictability. While local onset regions can be found over West Africa, their size is much smaller than the scale found for seasonal rainfall homogeneity. A potential use of local onset regions is presented that shows the link between the annual intertropical front progression and local agronomic onset.


2008 ◽  
Vol 96 (1-2) ◽  
pp. 179-189 ◽  
Author(s):  
G. A. Dalu ◽  
M. Gaetani ◽  
M. Baldi

2010 ◽  
Vol 23 (21) ◽  
pp. 5557-5571 ◽  
Author(s):  
Sally L. Lavender ◽  
Christopher M. Taylor ◽  
Adrian J. Matthews

Abstract Recent observational studies have suggested a role for soil moisture and land–atmosphere coupling in the 15-day westward-propagating mode of intraseasonal variability in the West African monsoon. This hypothesis is investigated with a set of three atmospheric general circulation model experiments. 1) When soil moisture is fully coupled with the atmospheric model, the 15-day mode of land–atmosphere variability is clearly identified. Precipitation anomalies lead soil moisture anomalies by 1–2 days, similar to the results from satellite observations. 2) To assess whether soil moisture is merely a passive response to the precipitation, or an active participant in this mode, the atmospheric model is forced with a 15-day westward-propagating cycle of regional soil moisture anomalies based on the fully coupled mode. Through a reduced surface sensible heat flux, the imposed wet soil anomalies induce negative low-level temperature anomalies and increased pressure (a cool high). An anticyclonic circulation then develops around the region of wet soil, enhancing northward moisture advection and precipitation to the west. Hence, in a coupled framework, this soil moisture–forced precipitation response would provide a self-consistent positive feedback on the westward-propagating soil moisture anomaly and implies an active role for soil moisture. 3) In a final sensitivity experiment, soil moisture is again externally prescribed but with all intraseasonal fluctuations suppressed. In the absence of soil moisture variability there are still pronounced surface sensible heat flux variations, likely due to cloud changes, and the 15-day westward-propagating precipitation signal is still present. However, it is not as coherent as in the previous experiments when interaction with soil moisture was permitted. Further examination of the soil moisture forcing experiment in GCM experiment 2 shows that this precipitation mode becomes phase locked to the imposed soil moisture anomalies. Hence, the 15-day westward-propagating mode in the West African monsoon can exist independently of soil moisture; however, soil moisture and land–atmosphere coupling act to feed back on the atmosphere and further enhance and organize it.


Sign in / Sign up

Export Citation Format

Share Document