west african monsoon
Recently Published Documents


TOTAL DOCUMENTS

304
(FIVE YEARS 69)

H-INDEX

51
(FIVE YEARS 4)

2022 ◽  
pp. 1-60

Abstract Over the recent decades, Extreme Precipitation Events (EPE) have become more frequent over the Sahel. Their properties, however, have so far received little attention. In this study the spatial distribution, intensity, seasonality and interannual variability of EPEs are examined, using both a reference dataset, based on a high-density rain-gauge network over Burkina Faso and 24 precipitation gridded datasets. The gridded datasets are evaluated in depth over Burkina Faso while their commonalities are used to document the EPE properties over the Sahel. EPEs are defined as the occurrence of daily-accumulated precipitation exceeding the all-day 99th percentile over a 1°x1° pixel. Over Burkina Faso, this percentile ranges between 21 and 33 mm day-1. The reference dataset show that EPEs occur in phase with the West African monsoon annual cycle, more frequently during the monsoon core season and during wet years. These results are consistent among the gridded datasets over Burkina Faso but also over the wider Sahel. The gridded datasets exhibit a wide diversity of skills when compared to the Burkinabe reference. The Global Precipitation Climatology Centre Full Data Daily version 1 (GPCC-FDDv1) and the Global Satellite Mapping of Precipitation gauge Reanalysis version 6.0 (GSMaP-gauge-RNL v6.0) are the only products that properly reproduce all of the EPE features examined in this work. The datasets using a combination of microwave and infrared measurements are prone to overestimate the EPE intensity, while infrared-only products generally underestimate it. Their calibrated versions perform than their uncalibrated (near-real-time) versions. This study finally emphasizes that the lack of rain-gauge data availability over the whole Sahel strongly impedes our ability to gain insights in EPE properties.


MAUSAM ◽  
2022 ◽  
Vol 44 (4) ◽  
pp. 359-364
Author(s):  
OLUWAGBEMIGA O. JEGEDE

This paper focusses on some aspects or the West African monsoonal circulation observed during the period 15 July-l0 August 1979 of the PGGE, as derived from the satellite cloud windvectors. Temporal averages of the computed winsfields reveal that the flow at the low level is southerly (monsoonal), and Its line of discontinuity with the continental northeasterly was found at approximately 16°-18°N, lying about 300 km south of the accepted mean position. At both the middle and upper tropospheres the flow is easterly with axis about 12o-14,N and, latitude 8 No respectively, such that it is a circulation south of the axis and northwards, it is anticyclonic. The satellite-observed tropospheric circulation IS then discussed in relation to the, weather manifestations over the sub-region typical of the July / August period.   The mass fields obtained from our gridded satellite-winds indicate that inflow into the land area occur mainly at the lowest layer (1000:850 hPa), whereas at the upper, levels (that is, above 850 hPa) it is predominantly an outflow, The tropospheric average gives a net mass for divergence from within the area, The significance of this result in relation to the observed weather phenomenology of a temporary cessation of the monsoon precipitations occurring about the peak of the season IS also discussed.


MAUSAM ◽  
2021 ◽  
Vol 43 (2) ◽  
pp. 175-182
Author(s):  
OLUWAGBEMIGA O. JEGEDE

Three separately recorded cases of thundery weather over West Africa that occurred during the conduct of the West African Monsoon Experiment (WAMEX) of 1979, are investigated with the kinematic vertical p-velocity field. The scheme employed here is based on a least-squares-plane technique which has been desribed in Jegede and Balogun (1991), as a variant to the similar methods used by Kung (1972, 1973), and Pedder (1981).   The aim in this study is to demonstrate the practicability of the kinematic method for interpreting observed surface weather. In all the three cast-s, there was some consistency noted between the precipitation patterns and the computed vertical velocity fields within the sub-region.    


2021 ◽  
Author(s):  
Leonore Jungandreas ◽  
Cathy Hohenegger ◽  
Martin Claussen

<p>Im mittleren Holozän dehnten sich die westafrikanischen Monsunniederschläge deutlich weiter nach Norden aus als es heute der Fall ist. Modellsimulation stellen, im Vergleich zu Rekonstruktionen, eine zu schwache Verschiebung des Niederschlags nach Norden dar mit einem zu starken meridionalen Niederschlagsgradienten. Studien zeigen, dass die Repräsentation von Wechselwirkungen zwischen Land und Atmosphäre dafür von entscheidender Bedeutung sind. Wechselwirkungen zwischen Land und Atmosphäre können jedoch stark variieren, abhängig davon, ob konvektive Prozesse in Klimamodellen explizit aufgelöst oder parametrisiert werden. Daher untersuchen wir, ob und wie Wechselwirkungen zwischen Land und Atmosphäre die westafrikanischen Monsunniederschläge in Simulationen mit explizit aufgelöster und parametrisierter Konvektion beeinflussen.<br /><br />Unabhängig von der Darstellung der Konvektion weisen Simulationen mit einer höheren Vegetationsdichte während des mittleren Holozäns - im Vergleich zu Simulation mit heutiger Vegetation - eine positive Wechselwirkungen zwischen Land und Atmosphäre über Nordafrika auf. Sowohl in unseren Simulationen mit explizit aufgelöster als auch mit parametrisierter Konvektion dehnt sich das Niederschlagsband über Nordafrika um 4-5° nach Norden aus, wenn wir eine höhere Vegetation vorschreiben. Diese nördliche Ausdehnung der Monsunniederschläge ist eine Folge von höheren latenten Wärmeflüssen in der Sahel-Sahara Region und einer Abschwächung und Nordwärts-Verschiebung des afrikanischen Ostjets.<br /><br />Während sich die Art der Wechselwirkungen zwischen Land und Atmosphäre in Simulationen mit explizit aufgelöster und parametrisierter Konvektion nicht unterscheidet, ist die Stärke der Wechselwirkungen zwischen Land und Atmosphäre deutlich verschieden. In Simulationen mit expliziter Konvektion sind die positiven Wechselwirkungen zwischen Land und Atmosphäre schwächer ausgeprägt als in Simulationen mit parametrisierter Konvektion. Der Grund für diese schwächeren Wechselwirkungen - im Gegensatz zu bisherigen Studien - ist nicht die abgeschwächte Reaktion des Niederschlags auf eine Änderung des latenten Wärmeflusses, sondern die abgeschwächte Reaktion der Bodenfeuchte auf eine Änderung des Niederschlags. Die Darstellung der Konvektion beeinflusst maßgeblich die Niederschlagseigenschaften, wie beispielsweise deren Intensität, räumliche Verteilung oder Häufigkeit. Diese verschiedenen Niederschlagseigenschaften beeinflussen den hydrologischen Kreislauf in unseren Simulationen maßgeblich. Lokale Starkniederschläge in Simulationen mit expliziter Konvektion führen zu einem hohen Wasserabfluss, weshalb sich die Bodenfeuchte weniger gut regenerieren kann als in Simulationen mit parametrisierter Konvektion. Wir zeigen, dass diese Limitierung der Bodenfeuchte in Simulationen mit expliziter Konvektion im Vergleich zu Simulationen mit parametrisierter Konvektion, die potenzielle Stärke der Wechselwirkungen zwischen Land und Atmosphäre einschränkt und die nördliche Ausdehnung der Monsunniederschläge begrenzt.</p>


2021 ◽  
pp. 1-42

Abstract The West African monsoon (WAM) is the dominant feature of West African climate providing the majority of annual rainfall. Projections of future rainfall over the West African Sahel are deeply uncertain with a key reason likely to be moist convection, which is typically parameterized in global climate models. Here, we use a pan-Africa convection permitting simulation (CP4), alongside a parameterized convection simulation (P25), to determine the key processes that underpin the effect of explicit convection on the climate change of the central West African Sahel (8°W-2°E, 12-17°N). In current climate, CP4 affects WAM processes on multiple scales compared to P25. There are differences in the diurnal cycles of rainfall, moisture convergence, and atmospheric humidity. There are upscale impacts: the WAM penetrates farther north, there is greater humidity over the north Sahel and the Saharan heat low regions, the sub-tropical subsidence rate over the Sahara is weaker, and ascent within the tropical rain belt is deeper. Under climate change, the WAM shifts northwards and Hadley circulation weakens in P25 and CP4. The differences between P25 and CP4 persist, however, underpinned by process differences at the diurnal and large-scales. Mean rainfall increases 17.1% in CP4 compared to 6.7% in P25 and there is greater weakening in tropical ascent and sub-tropical subsidence in CP4. These findings show the limitations of parameterized convection and demonstrate the value that explicit convection simulations can provide to climate modellers and climate policy decision makers.


2021 ◽  
Author(s):  
Andries Jan de Vries ◽  
Franziska Aemisegger ◽  
Stephan Pfahl ◽  
Heini Wernli

Abstract. Tropical ice clouds have an important influence on the Earth’s radiative balance. They often form as a result of tropical deep convection, which strongly affects the water budget of the tropical tropopause layer. Ice cloud formation involves complex interactions on various scales, which are not fully understood yet and lead to large uncertainties in climate predictions. In this study, we investigate the formation of tropical ice clouds related to deep convection in the West African monsoon, using stable water isotopes as tracers of moist atmospheric processes. We perform simulations using the regional isotope-enabled model COSMOiso with different resolutions and treatments of convection for the period of June–July 2016. First, we evaluate the ability of our simulations to represent the isotopic composition of monthly precipitation through comparison with GNIP observations, and the precipitation characteristics related to the monsoon evolution and convective storms based on insights from the DACCIWA field campaign in 2016. Next, a case study of a mesoscale convective system (MCS) explores the isotope signatures of tropical deep convection in atmospheric water vapour and ice. Convective updrafts within the MCS inject enriched ice into the upper troposphere leading to depletion of vapour within these updrafts due to the preferential condensation and deposition of heavy isotopes. Water vapour in downdrafts within the same MCS are enriched by non-fractionating sublimation of ice. In contrast to ice within the MCS core regions, ice in widespread cirrus shields is isotopically in approximate equilibrium with the ambient vapour, which is consistent with in situ formation of ice. These findings from the case study are supported by a statistical evaluation of isotope signals in the West African monsoon ice clouds. The following five key processes related to tropical ice clouds can be distinguished based on their characteristic isotope signatures: (1) convective lofting of enriched ice into the upper troposphere, (2) cirrus clouds that form in situ from ambient vapour under equilibrium fractionation, (3) sedimentation and sublimation of ice in the mixed-phase cloud layer in the vicinity of convective systems and underneath cirrus shields, (4) sublimation of ice in convective downdrafts that enriches the environmental vapour, and (5) the freezing of liquid water in the mixed-phase cloud layer at the base of convective updrafts. Importantly, the results show that convective systems strongly modulate the humidity budget and the isotopic composition of the lower tropical tropopause layer. They contribute to about 40 % of the total water and 60 % of HDO in the 175–125 hPa layer in the African monsoon region according to estimates based on our model simulations. Overall, this study demonstrates that isotopes can serve as useful tracers to disentangle the role of different processes in the Earth’s water cycle, including convective transport, the formation of ice clouds, and their impact on the tropical tropopause layer.


2021 ◽  
Vol 958 (1) ◽  
pp. 012004
Author(s):  
J Ebobenow ◽  
N A Arreyndip

Abstract Droughts have been found to have serious repercussions on humans, animals, and plants’ lives and they are likely to intensify under increasing global mean temperature. Monitoring drought conditions help in designing appropriate adaptations and mitigation strategies. This paper monitors the evolution of drought conditions in Africa over the past 30 years and the potential repercussions posed by this disaster event. We analyze and compare trends in surface temperatures, precipitation, soil moisture, Outgoing Longwave Radiation (OLR), and Palmer Drought Severity Index (PDSI). We use the NCEP/NCAR Reanalysis, the University of Delaware, the Climate Prediction Center (CPC), and the DAI PDSI gridded data for the period 1984-2014. Results from the NCEP/NCAR, University of Delaware, CPC, and the DAI PDSI gridded data show an increasingly warmer, drier, and less cloudy Sub-Saharan climate but with an intensification of the West African monsoon rainfall. Moreover, more than 80% of the continent shows strong evidence of droughts with an average increase in drought severity index. These conditions will likely have a negative effect on the agricultural sector which accounts for more than 70% of the Gross Domestic Product (GDP) of this region thereby posing a serious threat to regional food security. We recommend the research into and the development of new crop varieties that can tolerate higher temperatures and need less water. Additionally, our findings can also be used in Sub-Saharan Africa’s water management systems.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
F. Solmon ◽  
N. Elguindi ◽  
M. Mallet ◽  
C. Flamant ◽  
P. Formenti

AbstractThe West African Monsoon (WAM) is a complex system depending on global climate influences and multiple regional environmental factors. Central and Southern African biomass-burning (SABB) aerosols have been shown to perturb WAM during episodic northward inter-hemispheric transport events, but a possible dynamical connection between the core of the SABB aerosol outflow and the WAM system remains unexplored. Through regional climate modeling experiments, we show that SABB aerosols can indeed impact WAM dynamics via two competitive regional scale and inter-hemispheric dynamical feedbacks originating from (i) enhanced diabatic heating occurring in the Southeastern Atlantic low-cloud deck region, and (ii) aerosol and cloud-induced sea surface temperature cooling. These mechanisms, related to aerosol direct, semi-direct, and indirect effects, are shown to have different seasonal timings, resulting in a reduction of June to September WAM precipitation, while possibly enhancing late-season rainfall in WAM coastal areas.


Sign in / Sign up

Export Citation Format

Share Document