scholarly journals Mobile Optical Remote Sensing for quantification of Ammonia and Methane emissions from Dairy Farms in California.

Author(s):  
Nathalia Thygesen Vechi ◽  
Johan Mellqvist ◽  
Brian Offerle ◽  
Jerker Samuelsson ◽  
Charlotte Scheutz

<p>Solar occultation flux (SOF) and Mobile extractive FTIR (MeFTIR) are techniques used for over 20 years to quantify industrial emissions of VOCs, CH<sub>4</sub>, and others, from refineries in the USA, Europe, and Asia. Here, they were combined to assess methane (CH<sub>4</sub>) and ammonia (NH<sub>3</sub>) from concentrated animal feeding operations (CAFOs) in the San Joaquin Valley (SJV), California. SOF and MeFTIR were used to measure NH<sub>3</sub> column, and ground concentrations of NH<sub>3</sub> and CH<sub>4</sub>, respectively. SOF retrieves the gas column concentration from the solar spectra using a solar track, directing the light to a FTIR spectrometer, while crossing the gas plume. Subsequently, a direct flux approach combines the retrieved columns with wind information to obtain the mass fluxes of ammonia. In this survey, the wind information was acquired by a wind LIDAR, which measures wind speed and direction in the interval of 10 – 300 m. On the other hand, Methane emissions were quantified using a unique indirect flux approach by combining the estimated ammonia fluxes and the NH<sub>3</sub>:CH<sub>4</sub> ratios measured from the ground concentration using MeFTIR.</p><p>Two field campaigns performed in spring and autumn studied emissions from 14 single dairy CAFOs. The daily emissions from the single farms averaged 96.4 ± 38.4 kg<sub>NH3 </sub>h<sup>-1</sup>and 411 ± 185.4 kg<sub>CH4</sub>h<sup>-1</sup>, respectively, for NH<sub>3</sub> and CH<sub>4</sub> with the corresponding emission factors (EF) per animal unit of 11.3 ± 3.8 g<sub>NH3</sub>h<sup>-1</sup>AU<sup>-1</sup>and 50.3 ± 24.1 g<sub>CH4</sub>h<sup>-1</sup>AU<sup>-1</sup>. The uncertainty of ammonia measurements was 17 % in a standard confidence interval (CI) and 37 % in a 95 % CI, with the largest uncertainty associated with the wind measurements. Furthermore, the methane uncertainty estimations averaged 27 % in a standard CI, and 52 % in a 95 % CI, dominated by the ammonia fluxes uncertainty. Comparison between Annual or daily EFs obtained by SOF to other quantification approaches, have to take into consideration the SOF measurement conditions, day-time and sunny weather, due to their effects on the NH<sub>3</sub> emissions. The study contributed to develop the knowledge of dairy CAFOs emission, and to strengthen the role of optical remote sensing techniques, bridging the gap between satellites and stationary measurement approaches.</p>

Author(s):  
Kufre Bassey ◽  
Polycarp Chigbu

An important area of environmental science involves the combination of information from diverse sources relating to a similar endpoint. Majority of optical remote sensing techniques used for marine oil spills detection have been reported lately of having high number of false alarms (oil slick look-a-likes) phenomena which give rise to signals which appear to be oil but are not. Suggestions for radar image as an operational tool has also been made. However, due to the inherent risk in these tools, this paper presents the possible research directions of combining statistical techniques with remote sensing in marine oil spill detection and estimation.


2007 ◽  
Author(s):  
Kyoung S Ro ◽  
Patrick G Hunt ◽  
Melvin H Johnson ◽  
Ariel A Szogi ◽  
Matias B Vanotti

2007 ◽  
Author(s):  
Kyoung S Ro ◽  
Patrick G Hunt ◽  
Melvin H Johnson ◽  
Ariel A Szogi ◽  
Matias B Vanotti

1999 ◽  
Vol 14 (3) ◽  
pp. 89-94 ◽  
Author(s):  
M. M. Hanna ◽  
D. A. Steyn-Ross ◽  
Moira Steyn-Ross

2010 ◽  
Author(s):  
Russell Philbrick ◽  
Hans Hallen ◽  
Andrea Wyant ◽  
Tim Wright ◽  
Michelle Snyder

Geosciences ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 164
Author(s):  
Valentine Piroton ◽  
Romy Schlögel ◽  
Christian Barbier ◽  
Hans-Balder Havenith

Central Asian mountain regions are prone to multiple types of natural hazards, often causing damage due to the impact of mass movements. In spring 2017, Kyrgyzstan suffered significant losses from a massive landslide activation event, during which also two of the largest deep-seated mass movements of the former mining area of Mailuu-Suu—the Koytash and Tektonik landslides—were reactivated. This study consists of the use of optical and radar satellite data to highlight deformation zones and identify displacements prior to the collapse of Koytash and to the more superficial deformation on Tektonik. Especially for the first one, the comparison of Digital Elevation Models of 2011 and 2017 (respectively, satellite and unmanned aerial vehicle (UAV) imagery-based) highlights areas of depletion and accumulation, in the scarp and near the toe, respectively. The Differential Synthetic Aperture Radar Interferometry analysis identified slow displacements during the months preceding the reactivation in April 2017, indicating the long-term sliding activity of Koytash and Tektonik. This was confirmed by the computation of deformation time series, showing a positive velocity anomaly on the upper part of both landslides. Furthermore, the analysis of the Normalized Difference Vegetation Index revealed land cover changes associated with the sliding process between June 2016 and October 2017. In addition, in situ data from a local meteorological station highlighted the important contribution of precipitation as a trigger of the collapse. The multidirectional approach used in this study demonstrated the efficiency of applying multiple remote sensing techniques, combined with a meteorological analysis, to identify triggering factors and monitor the activity of landslides.


Sign in / Sign up

Export Citation Format

Share Document