detection and estimation
Recently Published Documents


TOTAL DOCUMENTS

1189
(FIVE YEARS 148)

H-INDEX

54
(FIVE YEARS 7)

2022 ◽  
pp. 333-376
Author(s):  
Giulia Panegrossi ◽  
Daniele Casella ◽  
Paolo Sanò ◽  
Andrea Camplani ◽  
Alessandro Battaglia

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mati Ullah ◽  
Chunhui Zhao ◽  
Hamid Maqsood ◽  
Mahmood Ul Hassan ◽  
Muhammad Humayun

PurposeThis paper aims to design an adaptive nonlinear strategy capable of timely detection and reconstruction of faults in the attitude’s sensors of an autonomous aerial vehicle with greater accuracy concerning other conventional approaches in the literature.Design/methodology/approachThe proposed scheme integrates a baseline nonlinear controller with an improved radial basis function neural network (IRBFNN) to detect different kinds of anomalies and failures that may occur in the attitude’s sensors of an autonomous aerial vehicle. An integral sliding mode concept is used as auto-tune weight update law in the IRBFNN instead of conventional weight update laws to optimize its learning capability without computational complexities. The simulations results and stability analysis validate the promising contributions of the suggested methodology over the other conventional approaches.FindingsThe performance of the proposed control algorithm is compared with the conventional radial basis function neural network (RBFNN), multi-layer perceptron neural network (MLPNN) and high gain observer (HGO) for a quadrotor vehicle suffering from various kinds of faults, e.g. abrupt, incipient and intermittent. From the simulation results obtained, it is found that the proposed algorithm’s performance in faults detection and estimation is relatively better than the rest of the methodologies.Practical implicationsFor the improvement in the stability and safety of an autonomous aerial vehicle during flight operations, quick identification and reconstruction of attitude’s sensor faults and failures always play a crucial role. Efficient fault detection and estimation scheme are considered indispensable for an error-free and safe flight mission of an autonomous aerial vehicle.Originality/valueThe proposed scheme introduces RBFNN techniques to detect and estimate the quadrotor attitude’s sensor faults and failures efficiently. An integral sliding mode effect is used as the network’s backpropagation law to automatically modify its learning parameters accordingly, thereby speeding up the learning capabilities as compared to the conventional neural network backpropagation laws. Compared with the other investigated techniques, the proposed strategy achieve remarkable results in the detection and estimation of various faults.


2021 ◽  
Author(s):  
Michele Pilia ◽  
Sara Mandelli ◽  
Paolo Bestagini ◽  
Stefano Tubaro

Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 7921
Author(s):  
Toshiya Arakawa

Drowsiness is among the important factors that cause traffic accidents; therefore, a monitoring system is necessary to detect the state of a driver’s drowsiness. Driver monitoring systems usually detect three types of information: biometric information, vehicle behavior, and driver’s graphic information. This review summarizes the research and development trends of drowsiness detection systems based on various methods. Drowsiness detection methods based on the three types of information are discussed. A prospect for arousal level detection and estimation technology for autonomous driving is also presented. In the case of autonomous driving levels 4 and 5, where the driver is not the primary driving agent, the technology will not be used to detect and estimate wakefulness for accident prevention; rather, it can be used to ensure that the driver has enough sleep to arrive comfortably at the destination.


2021 ◽  
Vol 2091 (1) ◽  
pp. 012015
Author(s):  
A E Krasnov ◽  
D Yu Ryzhkova ◽  
V A Vagin

Abstract Methodology for the analysis of concentrations of gaseous composite of atmosphere by the corresponding infrared (IR) spectrum, measured with the help of trajectory spectroradiometers (TSR) is observed. The developed algorithm for mathematical processing of the measurement results is briefly described, including the detection and estimation of the concentrations of the sought gases using the notch filtration of their spectral components, which makes it possible to significantly reduce the concentration identification error. The spectra of various substances in the mid-IR range are considered, and the results of approbation of the technique based on the TSR model with an external high-temperature radiation source on a 1 m path are presented.


Sign in / Sign up

Export Citation Format

Share Document