Data-driven estimate of past and present surface loading over North America: Bayesian Hierarchical Modelling approach applied to GPS and GRACE observations

Author(s):  
Yann Ziegler ◽  
Bramha Dutt Vishwakarma ◽  
Aoibheann Brady ◽  
Stephen Chuter ◽  
Sam Royston ◽  
...  

<p>Glacial Isostatic Adjustment (GIA) and the hydrological cycle are both associated with mass changes, which are observed by GRACE, and vertical land motion (VLM), which is observed by GPS. Hydrology-related VLM results from the instantaneous response of the elastic solid Earth to surface loading by freshwater, whereas GIA-related VLM reveals the long-term response of the visco-elastic Earth mantle to past glacial cycles. Thus, observations of mass changes and VLM are interrelated and GIA and hydrology are difficult to investigate independently. Taking advantage of the differences in the spatio-temporal characteristics of the GIA and hydrology fields, we can separate the respective contributions of each process. In this work, we use a Bayesian Hierarchical Modelling (BHM) approach to provide a new data-driven estimate of GIA and time-evolving hydrology-related VLM for North America. We detail our processing strategy to prepare the input data for the BHM while preserving the content of the original observations. We discuss the separation of GIA and hydrology processes from a statistical and geophysical point of view. Finally, we assess the reliability of our estimates and compare our results to the latest GIA and hydrological models. Specifically, we compare our GIA solution to a forward-model global field, ICE-6G, and a recent GIA estimate developed for North America (Simon et al. 2017). Our time-evolving hydrology field is compared with WaterGAP, a global water balance model. Overall, for both GIA and hydrology, there is a good agreement between our results and the forward models, but we also find differences which possibly highlight deficiencies in these models.</p>

2019 ◽  
Vol 15 (S352) ◽  
pp. 114-114
Author(s):  
Emma Curtis-Lake

AbstractThe mass-SFR relation of galaxies encodes information of present and historical star formation in the galaxy population. We expect the intrinsic scatter in the relation to increase to low mass where SFR becomes more stochastic. Measurements at z ‰ 4 from the Hubble Frontier fields have hinted at this (Santini et al., 2017), however, with the added uncertainty of lensing magnification we await JWST to provide robust measurements. Even with data-sets provided by JWST, uncertainties on mass and SFR estimates are often large, potentially covariant and dependent on assumptions used. I will present our method of Bayesian hierarchical modelling of the mass-SFR relation that self-consistently propagates uncertainties on mass and SFR estimates to uncertainties on the mass-SFR relation parameters. I will expose the biases imposed by standard SED-modelling practices, and address to what significance we can measure an increase in intrinsic scatter to low masses with JWST.


2020 ◽  
Author(s):  
Aoibheann Brady ◽  
Jonathan Rougier ◽  
Bramha Dutt Vishwakarma ◽  
Yann Ziegler ◽  
Richard Westaway ◽  
...  

<p>Sea level rise is one of the most significant consequences of projected future changes in climate. One factor which influences sea level rise is vertical land motion (VLM) due to glacial isostatic adjustment (GIA), which changes the elevation of the ocean floor. Typically, GIA forward models are used for this purpose, but these are known to vary with the assumptions made about ice loading history and Earth structure. In this study, we implement a Bayesian hierarchical modelling framework to explore a data-driven VLM solution for North America, with the aim of separating out the overall signal into its GIA and hydrology (mass change) components. A Bayesian spatio-temporal model is implemented in INLA using satellite (GRACE) and in-situ (GPS) data as observations. Under the assumption that GIA varies in space but is constant in time, and that hydrology is both spatially- and temporally-variable, it is possible to separate the contributions of each component with an associated uncertainty level. Early results will be presented. Extensions to the BHM framework to investigate sea level rise at the global scale, such as the inclusion of additional processes and incorporation of increased volumes of data, will be discussed.</p>


Sign in / Sign up

Export Citation Format

Share Document