intrinsic scatter
Recently Published Documents


TOTAL DOCUMENTS

76
(FIVE YEARS 34)

H-INDEX

15
(FIVE YEARS 6)

Author(s):  
Srinikitha Bhagvati ◽  
Shantanu Desai

Abstract In a recent work, Dai [1] searched for a variability in Newton’s constant G using the IGETS based gravitational acceleration measurements. However, this analysis, obtained from χ 2 minimization, did not incorporate the errors in the gravitational acceleration measurements. We carry out a similar search with one major improvement, wherein we incorporate these aforementioned errors. To model any possible variation in the gravitational acceleration, we fit the data to four models: a constant value, two sinusoidal models, and finally, a linear model for the variation of gravitational acceleration. We find that none of the four models provides a good fit to the data, showing that there is no evidence for a periodicity or a linear temporal variation in the acceleration measurements. We then redid these analyses after accounting for an unknown intrinsic scatter. After this, we find that although a constant model is still favored over the sinusoidal models, the linear variation for G is marginally preferred over a constant value, using information theory-based methods.


Author(s):  
Fiorenzo Vincenzo ◽  
David H Weinberg ◽  
Andrea Miglio ◽  
Richard R Lane ◽  
Alexandre Roman-Lopes

Abstract Using a sample of red giant stars from the Apache Point Observatory Galactic Evolution Experiment (APOGEE) Data Release 16, we infer the conditional distribution p([α/Fe] | [Fe/H]) in the Milky Way disk for the α-elements Mg, O, Si, S, and Ca. In each bin of [Fe/H] and Galactocentric radius R, we model p([α/Fe]) as a sum of two Gaussians, representing ‘low-α’ and ‘high-α’ populations with scale heights z1 = 0.45 kpc and z2 = 0.95 kpc, respectively. By accounting for age-dependent and z-dependent selection effects in APOGEE, we infer the [α/Fe] distributions that would be found for a fair sample of long-lived stars covering all z. Near the Solar circle, this distribution is bimodal at sub-solar [Fe/H], with the low-α and high-α peaks clearly separated by a minimum at intermediate [α/Fe]. In agreement with previous results, we find that the high-α population is more prominent at smaller R, lower [Fe/H], and larger |z|, and that the sequence separation is smaller for Si and Ca than for Mg, O, and S. We find significant intrinsic scatter in [α/Fe] at fixed [Fe/H] for both the low-α and high-α populations, typically ∼0.04-dex. The means, dispersions, and relative amplitudes of this two-Gaussian description, and the dependence of these parameters on R, [Fe/H], and α-element, provide a quantitative target for chemical evolution models and a test for hydrodynamic simulations of disk galaxy formation. We argue that explaining the observed bimodality will probably require one or more sharp transitions in the disk’s gas accretion, star formation, or outflow history in addition to radial mixing of stellar populations.


2021 ◽  
Vol 508 (1) ◽  
pp. 508-515
Author(s):  
Dhruv A Muley ◽  
Coral R Wheeler ◽  
Philip F Hopkins ◽  
Andrew Wetzel ◽  
Andrew Emerick ◽  
...  

ABSTRACT We explore the effect of including progenitor mass- and metallicity-dependent yields, supernova rates and energetics on variations in elemental abundance ratios (particularly [α/Fe]) in dwarf galaxies. To understand how the scatter and overall trends in [α/Fe] are affected by including variable metal yields from a discretely sampled initial mass function, we run FIRE simulations of a dwarf galaxy (M⋆(z = 0$) \sim 10^6\rm \, M_{\odot })$ using nucleosynthetic yields from the NuGrid data base that depend on the stellar progenitor mass and metallicity. While NuGrid exhibits lower aggregate α-element production than default FIRE yields, we find that its explicit mass dependence, even when including turbulent metal diffusion, substantially widens the intrinsic scatter in the simulated [Fe/H]-[α/Fe] – a phenomenon visible in some observations of dwarf galaxies.


2021 ◽  
Vol 912 (1) ◽  
pp. 41
Author(s):  
Connor Stone ◽  
Stéphane Courteau ◽  
Nikhil Arora

2021 ◽  
Vol 503 (4) ◽  
pp. 4855-4877
Author(s):  
E Curtis-Lake ◽  
J Chevallard ◽  
S Charlot ◽  
L Sandles

ABSTRACT We present a method to self-consistently propagate stellar-mass [$\hbox{$\hbox{${\rm M}$}_{\star }$}=\log (\hbox{${\rm M}$}/\hbox{${\rm M}_{\odot }$})$] and star-formation-rate [$\hbox{${\Psi }$}=\log (\hbox{${\psi }$}/\hbox{${\rm M}_{\odot }$}\, {\rm yr}^{-1}$)] uncertainties on to intercept (α), slope (β), and intrinsic-scatter (σ) estimates for a simple model of the main sequence of star-forming galaxies, where $\hbox{${\Psi }$}= \alpha + \beta \hbox{$\hbox{${\rm M}$}_{\star }$}+ \mathcal {N}(0,\sigma)$. To test this method and compare it with other published methods, we construct mock photometric samples of galaxies at z ∼ 5 based on idealized models combined with broad- and medium-band filters at wavelengths 0.8–5 μm. Adopting simple Ψ estimates based on dust-corrected ultraviolet luminosity can underestimate σ. We find that broad-band fluxes alone cannot constrain the contribution from emission lines, implying that strong priors on the emission-line contribution are required if no medium-band constraints are available. Therefore, at high redshifts, where emission lines contribute a higher fraction of the broad-band flux, photometric fitting is sensitive to Ψ variations on short (∼10 Myr) time-scales. Priors on age imposed with a constant (or rising) star formation history (SFH) do not allow one to investigate a possible dependence of σ on $\hbox{${\rm M}$}_{\star }$ at high redshifts. Delayed exponential SFHs have less constrained priors, but do not account for Ψ variations on short time-scales, a problem if σ increases due to stochasticity of star formation. A simple SFH with current star formation decoupled from the previous history is appropriate. We show that, for simple exposure-time calculations assuming point sources, with low levels of dust, we should be able to obtain unbiased estimates of the main sequence down to $\mathrm{ log}(\hbox{${\rm M}$}/\hbox{${\rm M}_{\odot }$})\sim 8$ at z ∼ 5 with the James Webb Space Telescope while allowing for stochasticity of star formation.


2021 ◽  
Vol 503 (3) ◽  
pp. 3394-3413
Author(s):  
Kaili Cao ◽  
David J Barnes ◽  
Mark Vogelsberger

ABSTRACT Dynamically relaxed galaxy clusters have long played an important role in galaxy cluster studies because it is thought their properties can be reconstructed more precisely and with less systematics. As relaxed clusters are desirable, there exist a plethora of criteria for classifying a galaxy cluster as relaxed. In this work, we examine 9 commonly used observational and theoretical morphological metrics extracted from $54\, 000$mock-X synthetic X-ray images of galaxy clusters taken from the IllustrisTNG, BAHAMAS, and MACSIS simulation suites. We find that the simulated criteria distributions are in reasonable agreement with the observed distributions. Many criteria distributions evolve as a function of redshift, cluster mass, numerical resolution, and subgrid physics, limiting the effectiveness of a single relaxation threshold value. All criteria are positively correlated with each other, however, the strength of the correlation is sensitive to redshift, mass, and numerical choices. Driven by the intrinsic scatter inherent to all morphological metrics and the arbitrary nature of relaxation threshold values, we find the consistency of relaxed subsets defined by the different metrics to be relatively poor. Therefore, the use of relaxed cluster subsets introduces significant selection effects that are non-trivial to resolve.


Author(s):  
Joseph M Fabritius ◽  
Evan J Arena ◽  
David M Goldberg

Abstract Canonically, elliptical galaxies might be expected to have a perfect rotational symmetry, making them ideal targets for flexion studies - however, this assumption hasn’t been tested. We have undertaken an analysis of low and high redshift galaxy catalogs of known morphological type with a new gravitational lensing code, Lenser. Using color measurements in the u − r bands and fit Sérsic index values, objects with characteristics consistent with early-type galaxies are found to have a lower intrinsic scatter in flexion signal than late-type galaxies. We find this measured flexion noise can be reduced by more than a factor of two at both low and high redshift.


Author(s):  
Yaguang Li ◽  
Timothy R Bedding ◽  
Dennis Stello ◽  
Sanjib Sharma ◽  
Daniel Huber ◽  
...  

Abstract Asteroseismic scaling relations are often used to derive stellar masses and radii, particulaly for stellar, exoplanet, and Galactic studies. It is therefore important that their precisions are known. Here we measure the intrinsic scatter of the underlying seismic scaling relations for Δν and νmax, using two sharp features that are formed in the H–R diagram (or related diagrams) by the red giant populations. These features are the edge near the zero-age core-helium-burning phase, and the strong clustering of stars at the so-called red giant branch bump. The broadening of those features is determined by factors including the intrinsic scatter of the scaling relations themselves, and therefore it is capable of imposing constraints on them. We modelled Kepler stars with a Galaxia synthetic population, upon which we applied the intrinsic scatter of the scaling relations to match the degree of sharpness seen in the observation. We found that the random errors from measuring Δν and νmax provide the dominating scatter that blurs the features. As a consequence, we conclude that the scaling relations have intrinsic scatter of $\sim 0.5\%$ (Δν), $\sim 1.1\%$ (νmax), $\sim 1.7\%$ (M) and $\sim 0.4\%$ (R), for the SYD pipeline measured Δν and νmax. This confirms that the scaling relations are very powerful tools. In addition, we show that standard evolution models fail to predict some of the structures in the observed population of both the HeB and RGB stars. Further stellar model improvements are needed to reproduce the exact distributions.


2020 ◽  
Vol 644 ◽  
pp. A125
Author(s):  
Cecilia Bacchini ◽  
Filippo Fraternali ◽  
Gabriele Pezzulli ◽  
Antonino Marasco

In the last decades, much effort has been put into finding the star formation law, which could unequivocally link the gas and the star formation rate (SFR) densities measured on a sub-kiloparsec scale in star-forming galaxies. The conventional approach of using the observed surface densities to infer star formation laws has however revealed a major and well-known issue, as such relations are valid for the high-density regions of galaxies but break down in low-density and HI-dominated environments. Recently, an empirical correlation between the total gas (HI+H2) and the SFR volume densities was obtained for a sample of nearby disc galaxies and for the Milky Way. This volumetric star formation (VSF) law is a single power-law with no break and a smaller intrinsic scatter with respect to the star formation laws based on the surface density. In this work, we explore the VSF law in the regime of dwarf galaxies in order to test its validity in HI-dominated, low-density, and low-metallicity environments. In addition, we assess this relation in the outskirts of spiral galaxies, which are low-density and HI-dominated regions similar to dwarf galaxies. Remarkably, we find that the VSF law, namely ρSFR ∝ ρgasα with α ≈ 2, is valid for both these regimes. This result indicates that the VSF law, which holds unbroken for a wide range of gas (≈3 dex) and SFR (≈6 dex) volume densities, is the empirical relation with the smallest intrinsic scatter and is likely more fundamental than surface-based star formation laws.


Sign in / Sign up

Export Citation Format

Share Document