Recent Results from the ALBIOM Project on Biomass Estimates from Sentinel-3 Altimetry Data

Author(s):  
Maria Paola Clarizia ◽  
Daniel Pascual ◽  
Leila Guerriero ◽  
Giuseppina De Felice-Proia ◽  
Cristina Vittucci ◽  
...  

<p>The ALtimetry for BIOMass (ALBIOM) project is an ESA-funded Permanent Open Call Project that aims to retrieve forest biomass using Copernicus Sentinel-3 (S3) altimeter data. The overall goal of ALBIOM is to estimate biomass with sufficient accuracy to be able to increase existing satellite data for biomass retrieval, as well as to improve the global mapping and monitoring of this fundamental variable.  </p><p>The project core tasks consist of 1) an analysis of the sensitivity of altimetry backscatter data on land parameters; 2) the development and validation of a Sentinel-3 altimeter backscatter simulator, including the effect of both topography and vegetation  and 3) the development and validation of a machine-learning biomass estimation algorithm.</p><p>Here we present a summary of the results obtained from the project. The sensitivity analysis reveals that both the altimetric waveforms and the corresponding Normalised Radar Cross Sections (NRCSs) can be sensitive to the presence of biomass in the order of 100-400 tons/ha, but they are also influenced by topography and water bodies. Different sensitivities with respect to the different frequencies and resolution modes are observed, highlighting non-linear behaviours of the NRCSs. The use of differential NRCSs, defined as the difference among those calculated over two different bandwidths, was demonstrated to be not necessarily more sensitive to vegetation, as it was instead highlighted by previous studies like [Papa et al., 2003].</p><p>The tracking window often appears partly or completely misplaced, when the tracking mode is in open-loop mode prescribing a predetermined range, and its size is often not long enough when collecting data over land, especially over regions with complex topography. The length and correct positioning of the tracking window over land represent therefore critical aspects for a study like ALBIOM.</p><p>The modelling work has been focused on the development of a merged model approach to simulate altimeter waveforms over vegetated areas. The merging is obtained via the simultaneous use of the modifiedTor Vergata Scattering Model (TOVSM) [Ferrazzoli and Guerriero, 1995, 1996] to simulate the waveform of a flat surface covered by forest vegetation, and the use of the Soil And Vegetation Reflection Simulator (SAVERS) [Pierdicca et al., 2014], originally conceived for GNSS-Reflectometry, and here adapted to the Altimetry system. The simulator developed within ALBIOM shows promising ability to reproduce the general characteristics of the S3 waveforms. The simulations related to forested surfaces present at least two peaks, due to the top of canopy and to the ground, but the presence of topography may introduce other peaks in the waveforms, making the identification of vegetation and topographic effects challenging.</p><p>Initial results on the algorithm development using Artificial Neural Networks (ANN) highlight some promising biomass estimates over specific areas (e.g. Central Africa) but also differences in algorithm performances among different regions. The corrected “ice” backscatter coefficient showed the highest sensitivity to biomass, but its values are often invalid over land, which limits the number of meaningful retrievals. The different altimeter tracking mode of Sentinel-3 over different areas of the globe (i.e., open loop and closed loop) could also be responsible for the differences in results.</p><p> </p><p> </p><p> </p>

2015 ◽  
Vol 12 (2) ◽  
pp. 239-243 ◽  
Author(s):  
Robert Treuhaft ◽  
Fabio Gonzalves ◽  
Joao Roberto dos Santos ◽  
Michael Keller ◽  
Michael Palace ◽  
...  

2011 ◽  
Vol 183-185 ◽  
pp. 220-224
Author(s):  
Ming Ze Li ◽  
Wen Yi Fan ◽  
Ying Yu

The forest biomass (which is referred to the arbor aboveground biomass in this research) is one of the most primary factors to determine the forest ecosystem carbon storages. There are many kinds of estimating methods adapted to various scales. It is a suitable method to estimate forest biomass of the farm or the forestry bureau in middle and last scales. First each subcompartment forest biomass should be estimated, and then the farm or the forestry bureau forest biomass was estimated. In this research, based on maoershan farm region, first the single tree biomass equation of main tree species was established or collected. The biomass of each specie was calculated according to the materials of tally, such as height, diameter and so on in the forest inventory data. Secondly, each specie’s biomass and total biomass in subcompartment were calculated according to the tree species composition in forest management investigation data. Thus the forest biomass spatial distribution was obtained by taking subcompartment as a unit. And last the forest total biomass was estimated.


2015 ◽  
Vol 3 (1) ◽  
pp. 15-26
Author(s):  
Mohamad Reza Ramezani ◽  
Mahmood Reza Sahebi ◽  
◽  

Forests ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 1073 ◽  
Author(s):  
Li ◽  
Li ◽  
Li ◽  
Liu

Forest biomass is a major store of carbon and plays a crucial role in the regional and global carbon cycle. Accurate forest biomass assessment is important for monitoring and mapping the status of and changes in forests. However, while remote sensing-based forest biomass estimation in general is well developed and extensively used, improving the accuracy of biomass estimation remains challenging. In this paper, we used China’s National Forest Continuous Inventory data and Landsat 8 Operational Land Imager data in combination with three algorithms, either the linear regression (LR), random forest (RF), or extreme gradient boosting (XGBoost), to establish biomass estimation models based on forest type. In the modeling process, two methods of variable selection, e.g., stepwise regression and variable importance-base method, were used to select optimal variable subsets for LR and machine learning algorithms (e.g., RF and XGBoost), respectively. Comfortingly, the accuracy of models was significantly improved, and thus the following conclusions were drawn: (1) Variable selection is very important for improving the performance of models, especially for machine learning algorithms, and the influence of variable selection on XGBoost is significantly greater than that of RF. (2) Machine learning algorithms have advantages in aboveground biomass (AGB) estimation, and the XGBoost and RF models significantly improved the estimation accuracy compared with the LR models. Despite that the problems of overestimation and underestimation were not fully eliminated, the XGBoost algorithm worked well and reduced these problems to a certain extent. (3) The approach of AGB modeling based on forest type is a very advantageous method for improving the performance at the lower and higher values of AGB. Some conclusions in this paper were probably different as the study area changed. The methods used in this paper provide an optional and useful approach for improving the accuracy of AGB estimation based on remote sensing data, and the estimation of AGB was a reference basis for monitoring the forest ecosystem of the study area.


Forests ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 602
Author(s):  
Carl Zhou ◽  
Xiaolu Zhou

To estimate the responses of forest ecosystems, most relationships in biological systems are described by allometric relationships, the parameters of which are determined based on field measurements. The use of existing observed data errors may occur during the scaling of fine-scale relationships to describe ecosystem properties at a larger ecosystem scale. Here, we analyzed the scaling error in the estimation of forest ecosystem biomass based on the measurement of plots (biomass or volume per hectare) using an improved allometric equation with a scaling error compensator. The efficiency of the compensator on reducing the scaling error was tested by simulating the forest stand populations using pseudo-observation. Our experiments indicate that, on average, approximately 94.8% of the scaling error can be reduced, and for a case study, an overestimation of 3.6% can be removed in practice from a large-scale estimation for the biomass of Pinus yunnanensis Franch.


2019 ◽  
Vol 47 (7) ◽  
pp. 1097-1109
Author(s):  
Samira Hosseini ◽  
Hamid Ebadi ◽  
Yasser Maghsoudi ◽  
Franck Garestier

2012 ◽  
Vol 2012 ◽  
pp. 1-16 ◽  
Author(s):  
Dengsheng Lu ◽  
Qi Chen ◽  
Guangxing Wang ◽  
Emilio Moran ◽  
Mateus Batistella ◽  
...  

Landsat Thematic mapper (TM) image has long been the dominate data source, and recently LiDAR has offered an important new structural data stream for forest biomass estimations. On the other hand, forest biomass uncertainty analysis research has only recently obtained sufficient attention due to the difficulty in collecting reference data. This paper provides a brief overview of current forest biomass estimation methods using both TM and LiDAR data. A case study is then presented that demonstrates the forest biomass estimation methods and uncertainty analysis. Results indicate that Landsat TM data can provide adequate biomass estimates for secondary succession but are not suitable for mature forest biomass estimates due to data saturation problems. LiDAR can overcome TM’s shortcoming providing better biomass estimation performance but has not been extensively applied in practice due to data availability constraints. The uncertainty analysis indicates that various sources affect the performance of forest biomass/carbon estimation. With that said, the clear dominate sources of uncertainty are the variation of input sample plot data and data saturation problem related to optical sensors. A possible solution to increasing the confidence in forest biomass estimates is to integrate the strengths of multisensor data.


Sign in / Sign up

Export Citation Format

Share Document